Abstract

We present an Isabelle formalization of abstract rewriting (see, e.g., [1]). First, we define standard relations like joinability, meetability, conversion, etc. Then, we formalize important properties of abstract rewrite systems, e.g., confluence and strong normalization. Our main concern is on strong normalization, since this formalization is the basis of [3] (which is mainly about strong normalization of term rewrite systems; see also IsaFoR/CeTA’s website\(^1\)). Hence lemmas involving strong normalization, constitute by far the biggest part of this theory. One of those is Newman’s lemma.

c\text{Contents}
c\begin{center}
\textbf{1 Infinite Sequences} & \textbf{2} \\
1.1 Operations on Infinite Sequences & \textbf{2} \\
1.2 Predicates on Natural Numbers & \textbf{4} \\
1.3 Assembling Infinite Words from Finite Words & \textbf{7} \\
\hline
\textbf{2 Abstract Rewrite Systems} & \textbf{13} \\
2.1 Definitions & \textbf{13} \\
2.2 Properties of ARSs & \textbf{18} \\
2.3 Newman’s Lemma & \textbf{37} \\
2.4 Commutation & \textbf{43} \\
2.5 Strong Normalization & \textbf{47} \\
2.6 Terminating part of a relation & \textbf{62} \\
\hline
\textbf{3 Relative Rewriting} & \textbf{72} \\
\hline
\textbf{4 Strongly Normalizing Orders} & \textbf{109} \\
\end{center}

\(^1\)\url{http://cl-informatik.uibk.ac.at/software/ceta}
1 Infinite Sequences

theory Seq
imports
 Main
 HOL-Library.Infinite-Set
begin

Infinite sequences are represented by functions of type nat ⇒ 'a.

type-synonym 'a seq = nat ⇒ 'a

1.1 Operations on Infinite Sequences

An infinite sequence is linked by a binary predicate P if every two consecutive elements satisfy it. Such a sequence is called a P-chain.

abbreviation (input) chainp :: ('a ⇒ 'a ⇒ bool) ⇒ 'a seq ⇒ bool where
 chainp P S ≡ ∀i. P (S i) (S (Suc i))

Special version for relations.

abbreviation (input) chain :: 'a rel ⇒ 'a seq ⇒ bool where
 chain r S ≡ chainp ($λ$x y. (x, y) ∈ r) S

Extending a chain at the front.

lemma cons-chainp:
 assumes P x (S 0) and chainp P S
 shows chainp P (case-nat x S) (is chainp P $?$$S$)
proof
 fix i show P ($?$$i$) ($?$($S$ (Suc i))) using assms by (cases i) simp-all
qed

Special version for relations.

lemma cons-chain:
 assumes (x, S 0) ∈ r and chain r S shows chain r (case-nat x S)
 using cons-chain[of $λ$x y. (x, y) ∈ r, OF assms] .

A chain admits arbitrary transitive steps.

lemma chainp-imp-relpowp:
 assumes chain P S shows (P * j) (S i) (S (i + j))
proof (induct \(i + j \) arbitrary: \(j \))
 case (Suc \(n \)) thus ?case using assms by (cases \(j \)) auto
qed simp

lemma chain-imp-relpow:
 assumes chain \(r S \) shows \((S i, (S (i + j))) \in r^\sim j\)
proof (induct \(i + j \) arbitrary: \(j \))
 case (Suc \(n \)) thus ?case using assms by (cases \(j \)) auto
qed simp

lemma chainp-imp-transclp:
 assumes chainp \(P S \) and \(i < j \) shows \((S i, (S j)) \in r^+\)
proof (induct \(j - i \) arbitrary: \(j \))
 from less-imp-Suc-add[of \(\text{assms}(2) \)] obtain \(n \) where \(j = i + \text{Suc} \ n \) by auto
 with chainp-imp-relpow[of \(P S \) \(\text{Suc} \ n \) \(i \), \(\text{OF} \ \text{assms}(1) \)]
 show \(\text{thesis} \)
 unfolding trancl-power[of \((S i, S j)\), to-pred]
 by force
qed

lemma chain-imp-trancl:
 assumes chain \(r S \) and \(i \leq j \) shows \((S i, (S j)) \in r^*\)
proof (induct \(j - i \) arbitrary: \(j \))
 from \(\text{assms}(2) \) obtain \(n \) where \(j = i + n \) by (induct \(j - i \) arbitrary: \(j \)) force+
 with chainp-imp-relpow[of \(P S \) \(\text{OF} \ \text{assms}(1) \), \(\text{of} \ n \) \(i \)]
 show \(\text{thesis} \)
 by (simp add: relpow-imp-trancl[of \((S i, (S (i + n)))\), to-pred])
qed

A chain admits arbitrary reflexive and transitive steps.

lemma chainp-imp-rtranclp:
 assumes chainp \(P S \) and \(i \leq j \) shows \(P^{**} (S i) (S j) \)
proof (induct \(j - i \) arbitrary: \(j \))
 from \(\text{assms}(2) \) obtain \(n \) where \(j = i + n \) by (induct \(j - i \) arbitrary: \(j \)) force+
 with chainp-imp-relpow[of \(P S \) \(\text{OF} \ \text{assms}(1) \), \(\text{of} \ n \) \(i \)]
 show \(\text{thesis} \)
 by (simp add: relpow-imp-rtrancl[of \((S i, (S (i + n)))\), to-pred])
qed

lemma chainp-imp-rtrancl:
 assumes chainp \(P S \) and \(i \leq j \) shows \((S i, (S j)) \in r^*\)
proof (induct \(j - i \) arbitrary: \(j \))
 from \(\text{assms}(2) \) obtain \(n \) where \(j = i + n \) by (induct \(j - i \) arbitrary: \(j \)) force+
 with chainp-imp-relpow[of \(P S \) \(\text{OF} \ \text{assms}(1) \), \(\text{of} \ n \) \(i \)]
 show \(\text{thesis} \)
 by (simp add: relpow-imp-rtrancl)
qed

If for every \(i \) there is a later index \(f i \) such that the corresponding elements satisfy the predicate \(P \), then there is a \(P \)-chain.

lemma stepfun-imp-chainp:
 assumes \(\forall i \geq n \cdot \text{nat}. \ f \ i \geq i \ \land \ P (S i) (S (f i)) \)
 shows chainp \(P (\lambda i. S ((f ^\sim i) n)) \) (is chainp \(P \) ?T)
proof
 fix i
 from assms have \((f \ ^\ ^\ i) \ n \geq n\) by (induct i) auto
 with assms[THEN spec[of \((f \ ^\ ^\ i) \ n\)]]
 show \(P \ (? i) \ (? i \ (Suc i))\) by simp
qed

lemma stepfun-imp-chainp:
 assumes \(\forall i \geq n::\text{nat}. \ f \ i > i \land P \ (S \ i) \ (S \ (f \ i))\)
 shows chainp \((\lambda i. \ S \ ((f \ ^\ ^\ i) \ n))\) (is chainp \(P \ ? T\))
using stepfun-imp-chainp'[of \(n \ f \ P \ S\)] and assms by force

lemma subchain:
 assumes \(\forall i::\text{nat}>n. \ \exists j>i. \ P \ (f \ i) \ (f \ j)\)
 shows \(\exists \varphi. \ (\forall i. \ i < j \rightarrow \varphi \ i < \varphi \ j) \land (\forall i. \ P \ (f \ (\varphi \ i)) \ (f \ (\varphi \ (Suc \ i))))\)
proof –
 from assms have \(\forall i \in \{i. \ i > n\}. \ \exists j>i. \ P \ (f \ i) \ (f \ j)\) by simp
 from bchoice [OF this] obtain g
 where *: \(\forall i>n. \ \ g \ i > i\)
 and **: \(\forall i>n. \ P \ (f \ i) \ (f \ (g \ i))\) by auto
 define \(\varphi\) where [simp]: \(\varphi \ i = (g \ ^\ ^\ i) \ (Suc \ n)\) for i
 from * have ***: \(\forall i. \ \varphi \ i > n\) by (induct-tac i) auto
 then have \(\forall i. \ \varphi \ i < \varphi \ (Suc \ i)\) using * by (induct-tac i) auto
 then have \(\forall i. \ i < j \Rightarrow \varphi \ i < \varphi \ j\) by (rule lift-Suc-mono-less)
 moreover have \(\forall i. \ P \ (f \ (\varphi \ i)) \ (f \ (\varphi \ (Suc \ i)))\) using ** and *** by simp
 ultimately show \(\exists \text{thesis by blast}\)
qed

If for every \(i\) there is a later index \(j\) such that the corresponding elements satisfy the predicate \(P\), then there is a \(P\)-chain.

lemma steps-imp-chainp':
 assumes \(\forall i\geq n::\text{nat}. \ \exists j\geq i. \ P \ (S \ i) \ (S \ j)\) shows \(\exists T. \ \text{chainp} \ P \ T\)
proof –
 from assms have \(\forall i \in \{i. \ i \geq n\}. \ \exists j\geq i. \ P \ (S \ i) \ (S \ j)\) by auto
 from bchoice [OF this]
 obtain f where \(\forall i \geq n. \ f \ i \geq i \land P \ (S \ i) \ (S \ (f \ i))\) by auto
 from stepfun-imp-chainp'[of \(n \ f \ P \ S\), OF this] show \(\exists \text{thesis by fast}\)
qed

lemma steps-imp-chainp:
 assumes \(\forall i\geq n::\text{nat}. \ \exists j>i. \ P \ (S \ i) \ (S \ j)\) shows \(\exists T. \ \text{chainp} \ P \ T\)
using steps-imp-chainp'[of \(n \ P \ S\)] and assms by force

1.2 Predicates on Natural Numbers

If some property holds for infinitely many natural numbers, obtain an index function that points to these numbers in increasing order.

locale infinitely-many =
 fixes \(p::\text{nat} \Rightarrow \text{bool}\)

assumes infinite: INFM $j. p j$

begin

lemma inf: $\exists j \geq i. p j$ using infinite[unfolded INFM-nat-le] by auto

fun index :: nat seq where
index 0 = (LEAST n. p n)
| index (Suc n) = (LEAST k. p k ∧ k > index n)

lemma index-p: $p (index n)$
proof (induct n)
case 0
from inf obtain j where $p j$ by auto
with LeastI[of $p j$] show ?case by auto
next
case (Suc n)
from inf obtain k where $k \geq \text{Suc (index n)} \land p k$ by auto
with LeastI[of $\lambda k. p k \land k > \text{index n} \ k$] show ?case by auto
qed

lemma index-ordered: $\text{index n} < \text{index} (\text{Suc n})$
proof -
from inf obtain k where $k \geq \text{Suc (index n)} \land p k$ by auto
with LeastI[of $\lambda k. p k \land k > \text{index n} \ k$] show ?thesis by auto
qed

lemma index-not-p-between:
assumes i1: $\text{index n} < i$
and i2: $i < \text{index} (\text{Suc n})$
shows $\neg p i$
proof -
from not-less-Least[of i2[simplified]] i1 show ?thesis by auto
qed

lemma index-ordered-le:
assumes $i \leq j$ shows $\text{index i} \leq \text{index j}$
proof -
from assms have $j = i + (j - i)$ by auto
then obtain k where $j = i + k$ by auto
have $\text{index i} \leq \text{index} (i + k)$
proof (induct k)
case (Suc k)
with index-ordered[of $i + k$]
show ?case by auto
qed simp
thus ?thesis unfolding j .
qed

lemma index-surj:
assumes $k \geq \text{index } l$
shows $\exists i, j. \; k = \text{index } i + j \land \text{index } i + j < \text{index } (\text{Suc } i)$
proof –
 from assms have $k = \text{index } l + (k - \text{index } l)$ by auto
then obtain u where $k = \text{index } l + u$ by auto
show ?thesis unfolding k
proof (induct u)
 case 0
 show ?case
 by (intro exI conjI, rule refl, insert index-ordered[of l], simp)
next
 case (Suc u)
 then obtain i, j
 where $lu: \; \text{index } l + u = \text{index } i + j$ and $\text{lt: index } i + j < \text{index } (\text{Suc } i)$ by auto
 hence $\text{index } l + u < \text{index } (\text{Suc } i)$ by auto
 show ?case
 proof (cases $\text{index } l + (\text{Suc } u) = \text{index } (\text{Suc } i)$)
 case False
 show ?thesis
 by (rule exI[of - i], rule exI[of - Suc j], insert lu lt False, auto)
 next
 case True
 show ?thesis
 by (rule exI[of - Suc i], rule exI[of - 0], insert True index-ordered[of Suc i], auto)
 qed
 qed
qed

lemma index-ordered-less:
 assumes $i < j$ shows $\text{index } i < \text{index } j$
proof –
 from assms have $\text{Suc } i \leq j$ by auto
 from index-ordered-le[OF this]
 have $\text{index } (\text{Suc } i) \leq \text{index } j$.
 with index-ordered[of i] show ?thesis by auto
qed

lemma index-not-p-start: assumes $i: i < \text{index } 0$ shows $\neg p \; i$
proof –
 from i[simplified index.simps] have $i < \text{Least } p$.
 from not-less-Least[OF this] show ?thesis .
qed

end
1.3 Assembling Infinite Words from Finite Words

Concatenate infinitely many non-empty words to an infinite word.

\[\text{fun } \text{inf-concat-simple} :: (\text{nat} \Rightarrow \text{nat}) \Rightarrow \text{nat} \Rightarrow (\text{nat} \times \text{nat}) \text{ where} \]
\[\text{inf-concat-simple} f 0 = (0, 0) \]
\[\text{inf-concat-simple} f (\text{Suc} \, n) = (\]
\[\text{let } (i, j) = \text{inf-concat-simple} f \, n \text{ in} \]
\[\text{if } \text{Suc} \, j < f \, i \text{ then } (i, \text{Suc} \, j) \]
\[\text{else } (\text{Suc} \, i, 0)) \]

\[\text{lemma } \text{inf-concat-simple-add}: \]
\[\text{assumes } ck: \text{inf-concat-simple} f \, k = (i, j) \]
\[\text{and } jl: j + l < f \, i \]
\[\text{shows } \text{inf-concat-simple} f \, (k + l) = (i, j + l) \]
\[\text{using } jl \]
\[\text{proof } (\text{induct } l) \]
\[\text{case } 0 \]
\[\text{thus } ?\text{case using } ck \text{ by simp} \]
\[\text{next} \]
\[\text{case } (\text{Suc} \, l) \]
\[\text{hence } c: \text{inf-concat-simple} f \, (k + l) = (i, j + l) \text{ by auto} \]
\[\text{show } ?\text{case} \]
\[\text{by } (\text{simp add: } c, \text{ insert } \text{Suc}(2), \text{ auto}) \]
\[\text{qed} \]

\[\text{lemma } \text{inf-concat-simple-surj-zero}: \exists \, k. \text{inf-concat-simple} f \, k = (i, 0) \]
\[\text{proof } (\text{induct } i) \]
\[\text{case } 0 \]
\[\text{show } ?\text{case} \]
\[\text{by } (\text{rule exI[of - 0], simp}) \]
\[\text{next} \]
\[\text{case } (\text{Suc} \, i) \]
\[\text{then obtain } k \text{ where } ck: \text{inf-concat-simple} f \, k = (i, 0) \text{ by auto} \]
\[\text{show } ?\text{case} \]
\[\text{proof } (\text{cases } f \, i) \]
\[\text{case } 0 \]
\[\text{show } ?\text{thesis} \]
\[\text{by } (\text{rule exI[of - Suc k], simp add: } ck \, 0) \]
\[\text{next} \]
\[\text{case } (\text{Suc} \, n) \]
\[\text{hence } 0 + n < f \, i \text{ by auto} \]
\[\text{from } \text{inf-concat-simple-add}[OF } ck, \text{ OF this }] \, Suc \]
\[\text{show } ?\text{thesis} \]
\[\text{by } (\text{intro exI[of - k + Suc } n], \text{ auto}) \]
\[\text{qed} \]
\[\text{qed} \]

\[\text{lemma } \text{inf-concat-simple-surj}: \]
\[\text{assumes } j < f \, i \]
shows $\exists k. \infconcat f k = (i, j)$
proof -
 from assms have $j: 0 + j < f i$ by auto
from $\infconcat\text{-simple-surj-zero}$ obtain k where $\infconcat f k = (i, 0)$
by auto
 from $\infconcat\text{-simple-add}[OF this, OF j]$ show thesis by auto
qed

lemma $\infconcat\text{-simple-mono}$:
 assumes $k \leq k'$ shows $\fst(\infconcat f k) \leq \fst(\infconcat f k')$
proof -
 from assms have $k' = k + (k' - k)$ by auto
then obtain l where $k' = k + l$ by auto
 show thesis unfolding k
proof (induct l)
 case $\Suc l$
 obtain $i j$ where $\infconcat f (k + l) = (i, j)$ by (cases $\infconcat f (k + l)$, auto)
 with \Suc have $\fst(\infconcat f k) \leq i$ by auto
 also have $\ldots \leq \fst(\infconcat f (k + \Suc l))$
 by (simp add: $\infconcat\text{-simple}$)
 finally show ?case.
 qed simp
qed

fun $\infconcat :: (\nat \Rightarrow \nat) \Rightarrow \nat \Rightarrow \nat \times \nat$ where
$\infconcat n 0 = (\LEAST j. n j > 0, 0)$
$| \infconcat n (\Suc k) = (\let (i, j) = \infconcat n k\text{ in (if } Suc j < n \text{ then } (i, Suc j) \text{ else } (\LEAST i'. i' > i \land n i' > 0, 0)))$

lemma $\infconcat\text{-bounds}$:
 assumes $\inf i: \InfM i. n i > 0$
 and $\res: \infconcat n k = (i, j)$
 shows $j < n i$
proof (cases k)
 case 0
 with \res have $i: i = (\LEAST i. n i > 0)$ and $j: j = 0$ by auto
from $\inf[\text{unfolded } \InfM\text{-nat-le}]$ obtain $i' where i': 0 < n i'$ by auto
 have $0 < n (\LEAST i. n i > 0)$
 by (rule \LeastI, rule i')
 with $i j$ show thesis by auto
next
 case $\Suc k'$
 obtain $i' j'$ where $\res': \infconcat n k' = (i' j')$ by force
 note $\res = \res[\text{unfolded } \Suc \infconcat\text{-simp s}]$ Let-def split
 show thesis
proof (cases $Suc j' < n i'$)
case True
 with res show ?thesis by auto
next
case False
 with res have i: \(i = (\text{LEAST } f. \, i' < f \land 0 < n \, f)\) and \(j: \, j = 0 \) by auto
 from \(\text{inf[unfolded INFM-nat]} \) obtain f where i' < f \land 0 < n \, f by auto
 have 0 < n (\(\text{LEAST } f. \, i' < f \land 0 < n \, f)\)
 using LeastI[of \(\lambda f. \, i' < f \land 0 < n \, f \), OF f]
 by auto
 with i j show ?thesis by auto
qed

lemma inf-concat-add:
 assumes res: \(\text{inf-concat } n \, k = (i,j) \)
 and j: \(j + m < n \, i \)
 shows \(\text{inf-concat } n \, (k + m) = (i,j+m) \)
 using j
proof (induct m)
 case \(0 \) show ?case using res by auto
next
case \(\text{Suc } m \)
 hence \(\text{inf-concat } n \, (k + m) = (i, j+m) \) by auto
 with \(\text{Suc}(2) \)
 show ?case by auto
qed

lemma inf-concat-step:
 assumes res: \(\text{inf-concat } n \, k = (i,j) \)
 and j: \(\text{Suc } (j + m) = n \, i \)
 shows \(\text{inf-concat } n \, (k + \text{Suc } m) = (\text{LEAST } i'. \, i' > i \land 0 < n \, i', 0) \)
proof –
 from \(j \) have \(j + m < n \, i \) by auto
 note res = inf-concat-add[OF res, OF this]
 show ?thesis by (simp add: res j)
qed

lemma inf-concat-surj-zero:
 assumes \(0 < n \, i \)
 shows \(\exists k. \, \text{inf-concat } n \, k = (i, 0) \)
proof –
 fix l
 have \(\forall \, j. \, j < l \land 0 < n \, j \longrightarrow (\exists \, k. \, \text{inf-concat } n \, k = (j,0)) \)
 proof (induct l)
 case \(0 \)
 thus ?case by auto
next
case \(\text{Suc } l \)
show \(?\text{case} \)
proof \((\text{intro allI impI, elim conjE}) \)
 fix \(j \)
 assume \(j: j < \text{Suc } l \) and \(nj: 0 < n j \)
 show \(\exists k. \text{inf-concat } n k = (j, 0) \)
proof (cases \(j < l \))
 case True
 from Suc \[THEN \ spec \[of \ - j \] \] True \(nj \) show \(?\text{thesis} \) by auto
next
 case False
 with \(j \) have \(j: j = l \) by auto
 show \(?\text{thesis} \)
proof (cases \(\exists j'. j' < l \land 0 < n j' \))
 case False
 have \(l: (\text{LEAST } i. 0 < n i) = l \)
 proof (rule Least-equality, rule nj \[unfolded j \])
 fix \(l' \)
 assume \(0 < n l' \)
 with False have \(\neg l' < l \) by auto
 thus \(l \leq l' \) by auto
 qed
 show \(?\text{thesis} \) by (rule exI \[of \ - 0 \], simp add: \(l \ j \))
next
 case True
 then obtain \(lll \) where \(lll: lll < l \) and \nlll: \(0 < n lll \) by auto
 then obtain \(ll \) where \(ll = \text{Suc } lll \) by (cases \(l \), auto)
 from \(lll \) \(ll \) have \(lll = ll - (ll - lll) \) by auto
 let \(?l' = \text{LEAST } d. 0 < n (ll - d) \)
 have \(nlll: 0 < n (ll - ?l') \)
 proof (rule LeastI)
 show \(0 < n (ll - (ll - lll)) \) using \(lll \) \(nlll \) by auto
 qed
 with Suc \[THEN \ spec \[of \ - ll - ?l' \] \] obtain \(k \) where \(k: \text{inf-concat } n k = (ll - ?l', 0) \)
 unfolding \(l \) by auto
 from \(nlll \) \(off \) obtain \(\text{off: Suc } (0 + \text{off}) = n (ll - ?l') \) by (cases \(n (ll - ?l'), \text{ auto} \))
 from \(\text{inf-concat-step}[\text{OF } k, \text{ OF } off]\) have \(\text{id: inf-concat } n (k + \text{Suc } \text{off}) = (\text{LEAST } i', ll - ?l' < i' \land 0 < n i', 0) \) (is \(= (?l, 0) \)).
 have \(ll: \exists l = l \) unfolding \(l \)
 proof (rule Least-equality)
 show \(ll - ?l' < \text{Suc } ll \land 0 < n (\text{Suc } ll) \) using \(nj \[unfolded j \ l \] \) by simp
 next
 fix \(l' \)
 assume \(\text{ass: } ll - ?l' < l' \land 0 < n l' \)
 show \(\text{Suc } ll \leq l' \)
 proof (rule ccontr)
 assume \(\text{not: } \neg ?\text{thesis} \)
hence \(l' \leq ll \) by auto

hence \(ll = l' + (ll - l') \) by auto

then obtain \(k \) where \(ll = k + l' \) by auto

from \(\text{ass have } l' + k = ll \) unfolding \(ll \) by auto

hence \(kl' \leq k \) by auto

have \(\theta < n (ll - k) \) using \(\text{ass unfolding } ll \) by simp

from \(\text{Least-le[of } \lambda k. \theta < n (ll - k), \text{OF this}] kl' \)

show \(\text{False by auto} \)

qed

show \(\text{thesis unfolding } j \)

by (rule \text{exI[of - } k + \text{Suc of } \text{off}], \text{unfold id } ll, \text{simp})

qed

qed

qed

qed

qed

}\)

with \(\text{assms show } \text{thesis by auto} \)

qed

lemma \text{inf-concat-surj}:

\text{assumes } j: j < n i

\text{shows } \exists k. \text{inf-concat } n k = (i, j)

\text{proof --}

from \(j \) have \(0 < n i \) by auto

from \(\text{inf-concat-surj-zero[of } n, \text{OF this] } \)

obtain \(k \) where \(\text{inf-concat } n k = (i, 0) \) by auto

from \(\text{inf-concat-add[of } n, \text{OF this, of } j \] j

show \(\text{thesis by auto} \)

qed

lemma \text{inf-concat-mono}:

\text{assumes } \theta: \text{INFM } i. \text{ n i } > \theta

\text{and resk: } \text{inf-concat } n k = (i, j)

\text{and reskp: } \text{inf-concat } n k' = (i', j')

\text{and lt: } i < i'

\text{shows } k < k'

\text{proof --}

note \(\text{bounds } = \text{inf-concat-bounds[of } \text{OF inf] } \)

\{\}

assume \(k' \leq k \)

hence \(k = k' + (k - k') \) by auto

then obtain \(l \) where \(k = k' + l \) by auto

have \(i' \leq \text{fst (inf-concat } n (k' + l)) \)

proof (induct \(l \))

\text{case } 0

with \(\text{reskp show } \text{case by auto} \)

next

\text{case } (\text{Suc } l)
obtain i'' j'' where l: \text{inf-concat} \ n \ (k' + l) = (i'', j'')$ \textbf{by force}
with Suc have one: $i' \leq i''$ \textbf{by auto}
from \textit{bounds}[OF \ l] \ have \ $j'': j'' < n \ i''$ \textbf{by auto}
show \ ?case
proof (cases $Suc \ j'' < n \ i''$

 case $True$
 show \ ?thesis \textbf{by (simp add: l True one)}

 qed

 qed

 with \ \textit{resk} \ k \ \textit{lt} \ have \ $False$ \textbf{by auto}
}

thus \ ?thesis \textbf{by arith}

qed

\textbf{lemma \ \textit{inf-concat-Suc}:}

assumes \ \textit{inf}: $INFM \ i. \ n \ i > 0$
 and f: $\forall i. \ f \ i \ (n \ i) = f \ (Suc \ i) \ 0$
 and \ \textit{resk}: $\text{inf-concat} \ n \ k = (i, j)$
 and \ \textit{ressk}: $\text{inf-concat} \ n \ (Suc \ k) = (i', j')$
shows \ $f \ i' \ j' = f \ i \ (Suc \ j)$

proof (cases $Suc \ j < n \ i$

 case $True$
 with \ \textit{ressk} \ resk
 show \ ?thesis \textbf{by simp}

 next

 case $False$
 let $?i = \text{LEAST} \ i'. \ i'' < i' \land 0 < n \ i'$
 from \ \textit{inf}[unfolded \ \textit{INFM-nat}] \ \textit{obtain} \ k \ \textbf{where} \ i'' < k \land 0 < n \ k \ \textbf{by auto}
 from \ \textit{LeastI}[of \ \lambda \ k. \ i'' < k \land 0 < n \ k, \ \textit{OF} \ \textit{this}]
 have \ $i'' < ?i$ \textbf{by auto}
 with \ \textit{one} \ show \ ?thesis \textbf{by (simp add: l False)}

 qed

 qed

 with \ \textit{resk} \ k \ \textit{lt} \ have \ $False$ \textbf{by auto}
}

thus \ ?thesis \textbf{by arith}

qed
have \(f(\text{Suc}\ i)\ 0 = f\ ?i\ 0 \) unfolding \(\bar{ii}' \) using \(d' \)

proof (induct \(d \))
 case 0
 show \(?case\ by\ simp\)
 next
 case (Suc \(d \))
 hence \(f(\text{Suc} \ i)\ 0 = f(\text{Suc} \ (i + d))\ 0 \) by auto
 also have ... = \(f(\text{Suc}(\text{Suc} \ i + d))\ 0 \)
 unfolding \(f[\text{symmetric}] \)
 using \(\text{Suc}(2)[\text{of}\ d] \) by simp
 finally show \(?case\ by\ simp\)
qed
thus \(?thesis\ unfolding\ i'\ j'\ j\ f\) by simp
qed

end

2 Abstract Rewrite Systems

theory Abstract-Rewriting
imports
 HOL−Library.Infinite-Set
 Regular−Sets.Regexp-Method
 Seq
begin

lemma trancl-mono-set:
 \(r \subseteq s \Rightarrow r^+ \subseteq s^+ \)
 by (blast intro: trancl-mono)

lemma relpow-mono:
 fixes \(r :: \ 'a\ rel \)
 assumes \(r \subseteq r' \) shows \(r \^ n \subseteq r' \^ n \)
 using assms by (induct \(n \)) auto

lemma refl-inv-image:
 refl \(R \Rightarrow\) refl (inv-image \(R\ f \))
 by (simp add: inv-image-def refl-on-def)

2.1 Definitions

Two elements are joinable (and then have in the joinability relation) w.r.t. \(A \), iff they have a common reduct.

definition join :: \('a\ rel \Rightarrow 'a\ rel \) \(((\cdot)^\star)\ \[1000\] \[999\] \) where
 \(A^\star = A^*\ O\ (A^{-1})^\star \)

Two elements are meetable (and then have in the meetability relation)
w.r.t. \(A \), iff they have a common ancestor.

definition meet :: 'a rel \(\Rightarrow \) 'a rel ((-) [1000] 999) where
\[A^\dagger = (A^{-1})^* \ O \ A^* \]

The *symmetric closure* of a relation allows steps in both directions.

abbreviation symcl :: 'a rel \(\Rightarrow \) 'a rel ((-) [1000] 999) where
\[A^{**} \equiv A \cup A^{-1} \]

A *conversion* is a (possibly empty) sequence of steps in the symmetric closure.

definition conversion :: 'a rel \(\Rightarrow \) 'a rel ((-) [1000] 999) where
\[A^{**} = (A^{**})^* \]

The set of *normal forms* of an ARS constitutes all the elements that do not have any successors.

definition NF :: 'a rel \(\Rightarrow \) 'a set where
\[NF \ A = \{ a. \ A \ \text{''} \{ a \} = \{ \} \} \]

definition normalizability :: 'a rel \(\Rightarrow \) 'a rel ((-) [1000] 999) where
\[A^! = \{ (a, b). (a, b) \in A^* \land b \in NF \ A \} \]

notation (ASCII)

symcl ((-'<->) [1000] 999) and
conversion ((-'<->+>*) [1000] 999) and
normalizability ((-)! [1000] 999)

lemma symcl-converse:
\[(A^{**})^{-1} = A^{**} \text{ by auto} \]

lemma symcl-Un: \((A \cup B)^{**} = A^{**} \cup B^{**}\) by auto

lemma no-step:
assumes \(A \ \text{''} \{ a \} = \{ \} \) shows \(a \in NF \ A \)
using assms by (auto simp: NF-def)

lemma joinI:
\((a, c) \in A^* \Rightarrow (b, c) \in A^* \Rightarrow (a, b) \in A^\dagger\)
by (auto simp: join-def rtrancl-converse)

lemma joinI-left:
\((a, b) \in A^* \Rightarrow (a, b) \in A^\dagger\)
by (auto simp: join-def)

lemma joinI-right: \((b, a) \in A^* \Rightarrow (a, b) \in A^\dagger\)
by (rule joinI) auto

lemma joinE:
assumes \((a, b) \in A^\dagger\)
obtains \(c \) where \((a, c) \in A^*\) and \((b, c) \in A^*\)
using assms by (auto simp: join-def rtrancl-converse)

lemma joinD:
 \((a, b) \in A^\downarrow \Longrightarrow \exists c. (a, c) \in A^* \land (b, c) \in A^*\)
 by (blast elim: joinE)

lemma meetI:
 \((a, b) \in A^* \Longrightarrow (a, c) \in A^* \land (b, c) \in A^*\)
 by (auto simp: meet-def rtrancl-converse)

lemma meetE:
 assumes \((b, c) \in A^\uparrow\) obtains \(a\) where \((a, b) \in A^* \land (a, c) \in A^*\)
 using assms by (auto simp: meet-def rtrancl-converse)

lemma meetD:
 \((b, c) \in A^\uparrow \Longrightarrow \exists a. (a, b) \in A^* \land (a, c) \in A^*\)
 by (blast elim: meetE)

lemma conversionI: \((a, b) \in (A^\leftrightarrow)^\ast \Longrightarrow (a, b) \in A^\leftrightarrow^\ast\)
 by (simp add: conversion-def)

lemma conversion-refl [simp]: \((a, a) \in A^\leftrightarrow^\ast\)
 by (simp add: conversion-def)

lemma conversionI':
 assumes \((a, b) \in A^\star\) shows \((a, b) \in A^\star\ast\)
 using assms proof (induct)
 case base then show ?case by simp
 next
 case (step b c)
 then have \((b, c) \in A^\ast\) by simp
 with \((a, b) \in A^\ast\ast\) show ?case unfolding conversion-def by (rule rtrancl.intros)
 qed

lemma rtrancl-comp-trancl-conv:
 \(r^+ O r = r^+\) by regexp

lemma trancl-o-refl-is-trancl:
 \(r^+ O r^* = r^+\) by regexp

lemma conversionE:
 \((a, b) \in A^\star^\ast \Longrightarrow ((a, b) \in (A^\ast)^\ast \Longrightarrow P) \Longrightarrow P\)
 by (simp add: conversion-def)

Later declarations are tried first for ‘proof’ and ‘rule,’ then have the “main” introduction / elimination rules for constants should be declared last.

declare joinI-left [intro]
declare joinI-right [intro]
declare joinI [intro]
declare joinD [dest]
declare joinE [elim]

declare meetI [intro]
declare meetD [dest]
declare meetE [elim]

declare conversionI' [intro]
declare conversionI [intro]
declare conversionE [elim]

lemma conversion-trans:
trans (A**)
unfolding trans-def
proof (intro allI impI)
fix a b c assume (a, b) ∈ A** and (b, c) ∈ A**
then show (a, c) ∈ A*** unfolding conversion-def
proof (induct)
case base then show ?case by simp
next
case (step b c')
from ⟨(b, c') ∈ A**⟩ and ⟨(c', c) ∈ (A**)⟩;
have (b, c) ∈ (A**)' by (rule converse-rtrancl-into-rtrancl)
with step show ?case by simp
qed
qed

lemma conversion-sym:
sym (A**)
unfolding sym-def
proof (intro allI impI)
fix a b assume (a, b) ∈ A** then show (b, a) ∈ A*** unfolding conversion-def
proof (induct)
case base then show ?case by simp
next
case (step b c)
then have (c, b) ∈ A** by blast
from ⟨(c, b) ∈ A**⟩ and ⟨(b, a) ∈ (A**)⟩
show ?case by (rule converse-rtrancl-into-rtrancl)
qed
qed

lemma conversion-inv:
(x, y) ∈ R*** ↔ (y, x) ∈ R***
by (auto simp: conversion-def)
 (metis (full-types) rtrancl-converseD symcl-converse)
lemma conversion-converse [simp]:
\((A^{*\ast})^{-1} = A^{*\ast}\) by (metis conversion-sym sym-conv-converse-eq)

lemma conversion-rtrancl [simp]:
\((A^{*\ast})^* = A^{*\ast}\) by (metis conversion-def rtrancl-idemp)

lemma rtrancl-join-join:
assumes \((a, b) \in A^* \land (b, c) \in A\downarrow\) shows \((a, c) \in A\downarrow\)
proof
\[\begin{align*}
&\quad \text{from } (b, c) \in A\downarrow \text{ obtain } b' \text{ where } (b, b') \in A^* \land (b', c) \in (A^{-1})^* \\
&\quad \text{unfolding join-def by blast} \\
&\quad \text{with } (a, b) \in A^*, \text{ have } (a, b') \in A^* \text{ by simp} \\
&\quad \text{with } (b', c) \in (A^{-1})^* \text{ show } \text{thesis unfolding join-def by blast}
\end{align*}\]
qed

lemma join-rtrancl-join:
assumes \((a, b) \in A\downarrow \land (c, b) \in A^*\) shows \((a, c) \in A\downarrow\)
proof
\[\begin{align*}
&\quad \text{from } (c, b) \in A^* \text{ have } (b, c) \in (A^{-1})^* \text{ unfolding rtrancl-converse by simp} \\
&\quad \text{from } (a, b) \in A\downarrow \text{ obtain } a' \text{ where } (a, a') \in A^* \land (a', b) \in (A^{-1})^* \\
&\quad \text{unfolding join-def by best} \\
&\quad \text{with } (b, c) \in (A^{-1})^* \text{ have } (a', c) \in (A^{-1})^* \text{ by simp} \\
&\quad \text{with } (a, a') \in A^* \text{ show } \text{thesis unfolding join-def by blast}
\end{align*}\]
qed

lemma NF-I: \((\forall b. (a, b) \notin A) \implies a \in NF A\) by (auto intro: no-step)

lemma NF-E: \(a \in NF A \implies ((a, b) \notin A \implies P) \implies P\) by (auto simp: NF-def)

declare NF-I [intro]
declare NF-E [elim]

lemma NF-no-step: \(a \in NF A \implies \forall b. (a, b) \notin A\) by auto

lemma NF-anti-mono:
assumes \(A \subseteq B\) shows \(NF B \subseteq NF A\)
using assms by auto

lemma NF-iff-no-step: \(a \in NF A = (\forall b. (a, b) \notin A)\) by auto

lemma NF-no-trancl-step:
assumes \(a \in NF A\) shows \(\forall b. (a, b) \notin A^+\)
proof
\[\begin{align*}
&\quad \text{from } \text{assms have } \forall b. (a, b) \notin A \text{ by auto} \\
&\quad \text{show } \text{thesis} \\
&\quad \text{proof (intro allI notI)}
\end{align*}\]

17
fix b assume $(a, b) \in A^+$
then show False by (induct) (auto simp: $\forall b. \ (a, b) \notin A$)
qed
qed

lemma NF-Id-on-fst-image [simp]: $\text{NF} (\text{Id-on} (\text{fst} \cdot A)) = \text{NF} A$ by force

lemma fst-image-NF-Id-on [simp]: $\text{fst} \cdot R = Q \Longrightarrow \text{NF} (\text{Id-on} Q) = \text{NF} R$ by force

lemma NF-empty [simp]: $\text{NF} \emptyset = \text{UNIV}$ by auto

lemma normalizability-I [simp]: $(a, b) \in A^* \Longrightarrow b \in \text{NF} A \Longrightarrow (a, b) \in A$
by (simp add: normalizability-def)

lemma normalizability-I [intro]: $(a, b) \in A^* \Longrightarrow (b, c) \in A \Longrightarrow (a, c) \in A$
by (auto simp add: normalizability-def)

lemma normalizability-E [simp]: $(a, b) \in A \Longrightarrow ((a, b) \in A^* \Longrightarrow b \in \text{NF} A \Longrightarrow P) \Longrightarrow P$
by (simp add: normalizability-def)

declare normalizability-I' [intro]
declare normalizability-I [intro]
declare normalizability-E [elim]

2.2 Properties of ARSs

The following properties on (elements of) ARSs are defined: completeness, Church-Rosser property, semi-completeness, strong normalization, unique normal forms, Weak Church-Rosser property, and weak normalization.

definition CR-on :: '$a \ rel \Rightarrow \ 'a \ set \Rightarrow \ bool$ where
CR-on $r A \leftarrow\rightarrow (\forall a \in A. \ \forall b. c. \ (a, b) \in r^* \land (a, c) \in r^* \rightarrow (b, c) \in \text{join} \ r)$

abbreviation CR :: '$a \ rel \Rightarrow \ bool$ where
$CR \ r \equiv CR$-on $r \ \text{UNIV}$

definition SN-on :: '$a \ rel \Rightarrow \ 'a \ set \Rightarrow \ bool$ where
SN-on $r A \leftarrow\rightarrow \neg (\exists f. f \ 0 \in A \land \text{chain} \ r \ f)$

abbreviation SN :: '$a \ rel \Rightarrow \ bool$ where
$SN \ r \equiv SN$-on $r \ \text{UNIV}$

Alternative definition of SN.

lemma SN-def: $SN \ r = (\forall x. \ SN$-on $r \ \{x\})$
unfolding SN-on-def by blast

definition UNF-on :: '$a \ rel \Rightarrow \ 'a \ set \Rightarrow \ bool$ where
UNF-on $r A \leftarrow\rightarrow (\forall a \in A. \ \forall b. c. \ (a, b) \in r^\prime \land (a, c) \in r^\prime \rightarrow b = c)$
abbreviation UNF :: 'a rel ⇒ bool where UNF r ≡ UNF-on r UNIV

definition WCR-on :: 'a rel ⇒ 'a set ⇒ bool where
 WCR-on r A ←→ (∀ a∈A. ∀ b. (a, b) ∈ r ∧ (a, c) ∈ r −→ (b, c) ∈ join r)

abbreviation WCR :: 'a rel ⇒ bool where WCR r ≡ WCR-on r UNIV

definition WN-on :: 'a rel ⇒ 'a set ⇒ bool where
 WN-on r A ←→ (∀ a∈A. ∃ b. (a, b) ∈ r)

abbreviation WN :: 'a rel ⇒ bool where
 WN r ≡ WN-on r UNIV

lemmas CR-defs = CR-on-def
lemmas SN-defs = SN-on-def
lemmas UNF-defs = UNF-on-def
lemmas WCR-defs = WCR-on-def
lemmas WN-defs = WN-on-def

definition complete-on :: 'a rel ⇒ 'a set ⇒ bool where
 complete-on r A ←→ SN-on r A ∧ CR-on r A

abbreviation complete :: 'a rel ⇒ bool where
 complete r ≡ complete-on r UNIV

definition semi-complete-on :: 'a rel ⇒ 'a set ⇒ bool where
 semi-complete-on r A ←→ WN-on r A ∧ CR-on r A

abbreviation semi-complete :: 'a rel ⇒ bool where
 semi-complete r ≡ semi-complete-on r UNIV

lemmas complete-defs = complete-on-def
lemmas semi-complete-defs = semi-complete-on-def

Unique normal forms with respect to conversion.

definition UNC :: 'a rel ⇒ bool where
 UNC A ←→ (∀ a b. a ∈ NF A ∧ b ∈ NF A ∧ (a, b) ∈ A*** −→ a = b)

lemma complete-onI:
 SN-on r A −→ CR-on r A −→ complete-on r A
 by (simp add: complete-defs)

lemma complete-onE:
 complete-on r A −→ (SN-on r A −→ CR-on r A −→ P) −→ P
 by (simp add: complete-defs)

lemma CR-onI:
 (∀ a b c. a ∈ A −→ (a, b) ∈ r∗ −→ (a, c) ∈ r∗ −→ (b, c) ∈ join r) −→ CR-on
lemma CR-on-singletonI:
\((\forall b \ c. \ (a, b) \in r^* \implies (a, c) \in r^* \implies (b, c) \in \text{join} \ r) \implies \text{CR-on} \ r \ \{a\}\)
by simp add: CR-defs

lemma CR-onE:
\(\text{CR-on} \ r \ A \implies a \in A \implies ((b, c) \in \text{join} \ r \implies P) \implies ((a, b) \notin r^* \implies P) \implies ((a, c) \notin r^* \implies P) \implies P\)
unfolding CR-defs by blast

lemma CR-onD:
\(\text{CR-on} \ r \ A \implies a \in A \implies (a, b) \in r^* \implies (a, c) \in r^* \implies (b, c) \in \text{join} \ r\)
by (blast elim: CR-onE)

lemma semi-complete-onI: \(\text{WN-on} \ r \ A \implies \text{CR-on} \ r \ A \implies \text{semi-complete-on} \ r \ A\)
by (simp add: semi-complete-defs)

lemma semi-complete-onE:
\(\text{semi-complete-on} \ r \ A \implies (\text{WN-on} \ r \ A \implies \text{CR-on} \ r \ A \implies P) \implies P\)
by (simp add: semi-complete-defs)

declare semi-complete-onI [intro]
declare semi-complete-onE [elim]

declare complete-onI [intro]
declare complete-onE [elim]

declare CR-onI [intro]
declare CR-on-singletonI [intro]

declare CR-onD [dest]
declare CR-onE [elim]

lemma UNC-I:
\((\forall a \ b. \ a \in \text{NF} \ A \implies b \in \text{NF} \ A \implies (a, b) \in A^{**} \implies a = b) \implies \text{UNC} \ A\)
by (simp add: UNC-def)

lemma UNC-E:
\[\text{UNC} \ A; \ a = b \implies P; \ a \notin \text{NF} \ A \implies P; \ b \notin \text{NF} \ A \implies P; \ (a, b) \notin A^{***} \implies P\] \implies P
unfolding UNC-def by blast

lemma UNF-onI: \((\forall a \ b \ c. \ a \in A \implies (a, b) \in r^l \implies (a, c) \in r^l \implies b = c) \implies \text{UNF-on} \ r \ A\)
by (simp add: UNF-defs)

lemma UNF-onE:
\[
UNF-on\ r\ A \Rightarrow a \in A \Rightarrow (b = c \Rightarrow P) \Rightarrow ((a, b) \not\in r' \Rightarrow P) \Rightarrow ((a, c) \\
\not\in r' \Rightarrow P) \Rightarrow P
\]

unfolding \textit{UNF-on-def} by blast

\textbf{lemma} \textit{UNF-onD}:
\[
UNF-on\ r\ A \Rightarrow a \in A \Rightarrow (a, b) \in r' \Rightarrow (a, c) \in r' \Rightarrow b = c
\]
by \textit{(blast elim: UNF-onE)}

\textbf{declare} \textit{UNF-onI} \texttt{[intro]}
\textbf{declare} \textit{UNF-onD} \texttt{[dest]}
\textbf{declare} \textit{UNF-onE} \texttt{[elim]}

\textbf{lemma} \textit{SN-onI}:
\[
\text{assumes } \forall f. [f 0 \in A; \text{ chain } r f] \Rightarrow False
\text{ shows } SN-on\ r\ A
\]
using \textit{assms unfolding \textit{SN-defs} by blast}

\textbf{lemma} \textit{SN-I}: \text{(\(\forall a. \text{SN-on } A \{a\}\))} \Rightarrow SN A
unfolding \textit{SN-on-def} by blast

\textbf{lemma} \textit{SN-on-trancl-imp-SN-on}:
\[
\text{assumes } \text{SN-on } (R^+) T \text{ shows } SN-on\ R\ T
\]
\text{proof} (\textit{rule ccontr})
\[
\text{assume } \neg \text{SN-on } R\ T
\text{ then obtain } s \text{ where } s 0 \in T \text{ and } \text{chain } R\ s \text{ unfolding } \textit{SN-defs} \text{ by } \textit{auto}
\text{ then have } \text{chain } (R^+) s \text{ by } \textit{auto}
\text{ with } (s 0 \in T); \text{ have } \neg \text{SN-on } (R^+) T \text{ unfolding } \textit{SN-defs} \text{ by } \textit{auto}
\text{ with } \textit{assms show } False \text{ by } \textit{simp}
\textbf{qed}

\textbf{lemma} \textit{SN-onE}:
\[
\text{assumes } \text{SN-on } r\ A
\text{ and } \neg (\exists f. f 0 \in A \wedge \text{chain } r f) \Rightarrow P
\text{ shows } P
\]
using \textit{assms unfolding \textit{SN-defs} by \textit{simp}}

\textbf{lemma} \textit{not-SN-onE}:
\[
\text{assumes } \neg \text{SN-on } r\ A
\text{ and } \forall f. [f 0 \in A; \text{ chain } r f] \Rightarrow P
\text{ shows } P
\]
using \textit{assms unfolding \textit{SN-defs} by \textit{simp}}

\textbf{declare} \textit{SN-onI} \texttt{[intro]}
\textbf{declare} \textit{SN-onE} \texttt{[elim]}
\textbf{declare} \textit{not-SN-onE} \texttt{[Pure.elim, elim]}

\textbf{lemma} \textit{refl-not-SN}:
\[
(x, x) \in R \Rightarrow \neg \text{SN } R
\]
unfolding \textit{SN-defs} by \textit{force}

21
lemma SN-on-irrefl:
assumes SN-on r A
shows ∀ a ∈ A. (a, a) /∈ r
proof (intro ballI notI)
 fix a assume a ∈ A and (a, a) ∈ r
 with assms show False unfolding SN-defs by auto
qed

lemma WCR-onI: (⋀ a b c. a ∈ A ⇒ (a, b) ∈ r ⇒ (a, c) ∈ r ⇒ (b, c) ∈ join r) ⇒ WCR-on r A
 by (simp add: WCR-defs)

lemma WCR-onE: WCR-on r A ⇒ a ∈ A ⇒ ((b, c) ∈ join r ⇒ P) ⇒ ((a, b) /∈ r ⇒ P) ⇒
((a, c) /∈ r ⇒ P) ⇒ P
 unfolding WCR-on-def by blast

lemma SN-nat-bounded: SN { (x, y :: nat). x < y ∧ y ≤ b } (is SN ?R)
proof
 fix f
 assume chain ?R f
 then have steps: ⋀ i. (f i, f (Suc i)) ∈ ?R ..
 { fix i
 have inc: f 0 + i ≤ f i
 proof (induct i)
 case 0 then show ?case by auto
 next
 case (Suc i)
 have f 0 + Suc i ≤ f i + Suc 0 using Suc by simp
 also have ... ≤ f (Suc i) using steps [of i]
 by auto
 finally show ?case by simp
 qed
 }
 from this [of Suc b] steps [of b]
 show False by simp
qed

lemma WCR-onD: WCR-on r A ⇒ a ∈ A ⇒ (a, b) ∈ r ⇒ (a, c) ∈ r ⇒ (b, c) ∈ join r
 by (blast elim: WCR-onE)

lemma WN-onI: (⋀ a. a ∈ A ⇒ ∃ b. (a, b) ∈ r') ⇒ WN-on r A
 by (auto simp: WN-defs)

lemma WN-onE: WN-on r A ⇒ a ∈ A ⇒ (⋀ b. (a, b) ∈ r' ⇒ P) ⇒ P
 unfolding WN-defs by blast
lemma WN-onD: WN-on r A \implies a \in A \implies \exists b. \ (a, b) \in r'
by (blast elim: WN-onE)

declare WCR-onI [intro]
declare WCR-onD [dest]
declare WCR-onE [elim]
declare WN-onI [intro]
declare WN-onD [dest]
declare WN-onE [elim]

Restricting a relation r to those elements that are strongly normalizing with respect to a relation s.

definition restrict-SN :: 'a rel \Rightarrow 'a rel \Rightarrow 'a rel where
restrict-SN r s = {(a, b) | a b. (a, b) \in r \land SN-on s {a}}

lemma SN-restrict-SN-idemp [simp]: SN (restrict-SN A A)
by (auto simp: restrict-SN-def SN-defs)

lemma SN-on-Image:
assumes SN-on r A
shows SN-on r (r '' A)
proof
fix f
assume f 0 \in r '' A and chain: chain r f
then obtain a where a \in A and 1: (a, f 0) \in r by auto
let ?g = case-nat a f
from cons-chain [OF 1 chain] have chain r ?g .
moreover have ?g 0 \in A by (simp add: ⟨a \in A⟩)
ultimately have ¬ SN-on r A unfolding SN-defs by best
with assms show False by simp
qed

lemma SN-on-subset2:
assumes A \subseteq B and SN-on r B
shows SN-on r A
using assms unfolding SN-on-def by blast

lemma step-preserves-SN-on:
assumes 1: (a, b) \in r
and 2: SN-on r {a}
shows SN-on r {b}
using 1 and SN-on-Image [OF 2] and SN-on-subset2 [of {b} r '' {a}] by auto

lemma steps-preserve-SN-on: (a, b) \in A* \implies SN-on A {a} \implies SN-on A {b}
by (induct rule: rtrancl.induct) (auto simp: step-preserves-SN-on)

lemma relpow-seq:
assumes \((x, y) \in r^\ast n\)
shows \(\exists f. f \, 0 = x \land f \, n = y \land (\forall i<n. (f \, i, f \, (\text{Suc} \, i)) \in r)\)
using assms
proof (induct \(n\) arbitrary: \(y\))
case 0 then show \(?case\) by auto
next
case (Suc \(n\))
then obtain \(z\) where \((x, z) \in r^\ast n\) and \((z, y) \in r\) by auto
obtain \(f\) where \(f \, 0 = x\) and \(f \, n = z\) and \(\forall i<n. (f \, i, f \, (\text{Suc} \, i)) \in r\)
using assms unfolded rtrancl-power [of \(x\) \(y\) - \(r\)] by blast

lemma rtrancl-imp-seq:
assumes \((x, y) \in r^\ast\)
shows \(\exists f \, n. f \, 0 = x \land f \, n = y \land (\forall i<n. (f \, i, f \, (\text{Suc} \, i)) \in r)\)
using assms [unfolded rtrancl-power] and relpow-seq [of \(x\) \(y\) - \(r\)] by blast

lemma SN-on-Image-rtrancl:
assumes \(\text{SN-on} \, r \, A\)
shows \(\text{SN-on} \, r \, (r^\ast \, '' \, A)\)
proof
fix \(f\)
assume \(f0: f \, 0 \in r^\ast \, '' \, A\) and chain: \(\text{chain} \, r \, f\)
then obtain \(a\) where \(a \in A\) and \((a, f \, 0) \in r^\ast\) by auto
then obtain \(n\) where \((a, f \, 0) \in r^\ast n\) unfolding rtrancl-power by auto
show False
proof (cases \(n\))
 case 0
 with \((a, f \, 0) \in r^\ast n\) have \(f \, 0 = a\) by simp
 then have \(f \, 0 \in A\) by (simp add: \(a\))
 with chain have \(\neg \, \text{SN-on} \, r \, A\) by auto
 with assms show False by simp
next
case (Suc \(n\))
from relpow-seq [OF \((a, f \, 0) \in r^\ast n\)]
obtain \(g\) where \(g0: g \, 0 = a\) and \(g \, n = f \, 0\)
and gseq: \(\forall i<n. (g \, i, g \, (\text{Suc} \, i)) \in r\) by auto
let \(?if = \lambda i. \text{if} \, i < n\) then \(g \, i\) else \(f \, (i - n)\)
have chain \(?if\)
proof
 fix \(i\)
\{
 assume Suc \ i < n
 then have (\?f \ i, \?f (Suc \ i)) \in r by (simp add: gseq)
\}

moreover
\{
 assume Suc \ i > n
 then have eq: Suc (i - n) = Suc i - n by arith
 from chain have (f (i - n), f (Suc (i - n))) \in r by simp
 then have (f (i - n), f (Suc i - n)) \in r by (simp add: eq)
 with :Suc \ i > n have (\?f \ i, \?f (Suc \ i)) \in r by simp
\}

moreover
\{
 assume Suc \ i = n
 then have eq: f (Suc i - n) = g n by (simp add: gseq)
 from :Suc \ i = n have eq': i = n - 1 by arith
 from gseq have (g i, f (Suc i - n)) \in r unfolding eq by (simp add: Suc eq')
 then have (\?f \ i, \?f (Suc \ i)) \in r using :Suc \ i = n by simp
\}

ultimately show (\?f \ i, \?f (Suc \ i)) \in r by simp
qed

moreover have \?f 0 \in A
proof (cases n)
 case 0
 with (\a, \f 0) \in r^\sim \n have eq: \a = \f 0 by simp
 from a show \?thesis by (simp add: eq 0)
 next
 case (Suc \ m)
 then show \?thesis by (simp add: a g0)
 qed

ultimately have \neg SN-on r A unfolding SN-defs by best
with assms show False by simp
qed

qed

declare subrelI [Pure.intro]

lemma restrict-SN-trancl-simp [simp]: (restrict-SN A A)\+ = restrict-SN (A\+) A
(is \?lhs = \?rhs)
proof
 show \?lhs \subseteq \?rhs
 proof
 fix \ a \ b assume (\a, \b) \in \?lhs then show (\a, \b) \in \?rhs
 unfolding restrict-SN-def by (induct rule: trancl.induct) auto
 qed
 next

 25
show \(\text{?rhs} \subseteq \text{?lhs} \)

proof

fix \(a \) \(b \) assume \((a, b) \in \text{?rhs} \)
then have \((a, b) \in A^+ \) and \(\text{SN-on} \ A \{a\} \) unfolding \(\text{restrict-SN-def} \) by \(\text{auto} \)
then show \((a, b) \in \text{?lhs} \)

proof (induct rule: trancl.induct)
case \(\text{(r-into-trancl} \ x \ y) \) then show \(\text{?case} \) unfolding \(\text{restrict-SN-def} \) by \(\text{auto} \)
next
case \(\text{(transl-into-trancl} \ a \ b \ c) \)
then have \(\text{IH} : (a, b) \in \text{?lhs} \) by \(\text{auto} \)
from \(\text{trancl-into-trancl} \) have \((a, b) \in A^* \) by \(\text{auto} \)
from this and \((\text{SN-on} \ A \{a\}) \) have \(SN-on \ A \{b\} \) by (rule steps-preserve-SN-on)
with \((b, c) \in A \) have \((b, c) \in \text{?lhs} \) unfolding \(\text{restrict-SN-def} \) by \(\text{auto} \)
with \(\text{IH} \) show \(\text{?case} \) by \(\text{simp} \)
qed
qed

lemma \(SN-imp-WN : \)
assumes \(SN \ A \) shows \(WN \ A \)
proof
from \((\text{SN} \ A) \) have \(wf \ (A^{-1}) \) by (simp add; \(\text{SN-defs} \) \(\text{wf-iff-no-infinite-down-chain} \))
show \(WN \ A \)
proof
fix \(a \)
show \(\exists \ b. (a, b) \in A^1 \) unfolding \(\text{normalizability-def} \) \(\text{NF-def} \) \(\text{Image-def} \)
by (rule \(\text{wfE-min} \) \([\text{OF \ (\text{wf} \ (A^{-1}) \)}] \), \(\text{of} \ A^* " \{a\}, \text{simplified} \))
(\(\text{auto} \) intro; \(\text{rtrancl-into-rtrancl} \))
qed
qed

lemma \(UNC-imp-UNF : \)
assumes \(UNC \ r \) shows \(UNF \ r \)
proof
\{
fix \(x \ y \ z \) assume \((x, y) \in r^1 \) and \((x, z) \in r^1 \)
then have \((x, y) \in r^* \) and \((x, z) \in r^* \) and \(y \in NF \ r \) and \(z \in NF \ r \) by \(\text{auto} \)
then have \((x, y) \in r^{**} \) and \((x, z) \in r^{**} \) by \(\text{auto} \)
then have \((z, x) \in r^{**} \) using \(\text{conversion-sym} \) unfolding \(\text{sym-def} \) by \(\text{best} \)
with \((x, y) \in r^{**} \) have \((z, y) \in r^{**} \) using \(\text{conversion-trans} \) unfolding \(\text{trans-def} \) by \(\text{best} \)
from \(\text{assms} \) and this and \((z \in NF \ r) \) and \((y \in NF \ r) \) have \(z = y \) unfolding \(UNC-def \) by \(\text{auto} \)
\} then show \(\text{?thesis} \) by \(\text{auto} \)
qed

lemma \(\text{join-NF-imp-eq} : \)
assumes \((x, y) \in r^1 \) and \(x \in NF \ r \) and \(y \in NF \ r \)
shows \(x = y \)
proof –
from \((x, y) \in r^\downarrow\) obtain \(z\) where \((x, z) \in r^*\) and \((z, y) \in (r^{-1})^*\) unfolding join-def by auto
then have \((y, z) \in r^*\) unfolding rtrancl-converse by simp
from \((x \in \text{NF} \ r)\) have \((x, z) \notin r^\uparrow\) using NF-no-trancl-step by best
then have \(x = z\) using rtranclD \[\text{OF} \ ((x, z) \in r^*)\] by auto
with \((x = z)\) show ?thesis by simp
qed

lemma rtrancl-Restr:
assumes \((x, y) \in (\text{Restr} \ r \ A)^*\)
shows \((x, y) \in r^*\)
using assms by induct auto

lemma join-mono:
assumes \(r \subseteq s\)
shows \(r^\downarrow \subseteq s^\downarrow\)
using rtrancl-mono \[\text{OF} \ assms\] by (auto simp: join-def rtrancl-converse)

lemma CR-iff-meet-subset-join: \(\text{CR} \ r = (r^\uparrow \subseteq r^\downarrow)\)
proof
assume \(\text{CR} \ r\) show \(r^\uparrow \subseteq r^\downarrow\)
proof (rule subrelI)
fix \(x \ y\) assume \((x, y) \in r^\uparrow\)
then obtain \(z\) where \((z, x) \in r^*\) and \((z, y) \in r^*\) using meetD by best
with \((\text{CR} \ r)\) show \((x, y) \in r^\downarrow\) by (auto simp: CR-defs)
qed
next
assume \(r^\uparrow \subseteq r^\downarrow\) \{
fix \(x \ y \ z\) assume \((x, y) \in r^*\) and \((x, z) \in r^*\)
then have \((y, z) \in r^\downarrow\) unfolding meet-def rtrancl-converse by auto
with \((r^\uparrow \subseteq r^\downarrow)\) have \((y, z) \in r^\downarrow\) by auto
\}
then show \(\text{CR} \ r\) by (auto simp: CR-defs)
qed

lemma CR-divergence-imp-join:
assumes \(\text{CR} \ r\) and \((x, y) \in r^*\) and \((x, z) \in r^*\)
shows \((y, z) \in r^\downarrow\)
using assms by auto

lemma join-imp-conversion: \(r^\downarrow \subseteq r^{\leftrightarrow}\)
proof
fix \(x \ z\) assume \((x, z) \in r^\downarrow\)
then obtain \(y\) where \((x, y) \in r^*\) and \((z, y) \in r^*\) by auto
then have \((x, y) \in r^{\leftrightarrow}\) and \((z, y) \in r^{\leftrightarrow}\) by auto
from \((z, y) \in r^{\leftrightarrow}\) have \((y, z) \in r^{\leftrightarrow}\) using conversion-sym unfolding sym-def by best
with \((x, y) \in r^{**}\) show \((x, z) \in r^{**}\) using conversion-trans unfolding trans-def by best

qed

lemma meet-imp-conversion: \(r^1 \subseteq r^{**}\)
proof (rule subrelI)
 fix \(y\) \(z\) assume \((y, z) \in r^1\)
 then obtain \(x\) where \((x, y) \in r^*\) and \((x, z) \in r^*\) by auto
 then have \((x, y) \in r^{**}\) and \((x, z) \in r^{**}\) by auto
from \((x, y) \in r^{**}\) have \((y, x) \in r^{**}\) using conversion-sym unfolding sym-def by best
with \((x, z) \in r^{**}\) show \((y, z) \in r^{**}\) using conversion-trans unfolding trans-def by best

qed

lemma CR-imp-UNF:
assumes CR \(r\) shows UNF \(r\)
proof
 fix \(x\) \(y\) \(z\) assume CR \(r\) and \((x, y) \in r^1\)
 then obtain \(n\) where \((x, y) \in r^\hat{n}\)
of unfolding normalizability-def by auto
from assms and \((x, y) \in r^*\) and \((x, z) \in r^*\) have \((y, z) \in r^1\)
 by (rule CR-divergence-imp-join)
from this and \((y \in NF \ r)\) and \((z \in NF \ r)\) have \(y = z\) by (rule join-NF-imp-eq)

qed

lemma CR-iff-conversion-imp-join:
assumes CR \(r\) \((r^{**} \subseteq r^1)\)
proof (intro iffI subrelI)
 fix \(x\) \(y\) assume CR \(r\) and \((x, y) \in r^{**}\)
 then obtain \(n\) where \((x, y) \in (r^{**})^{-n}\)
of unfolding conversion-def rtrancl-is-UN-relpow by auto
by (rule CR-divergence-imp-join)
from this and \((y \in NF \ r)\) and \((z \in NF \ r)\) have \(y = z\) by (rule join-NF-imp-eq)

qed
then have \((z, x) \in r^*\) by \textbf{simp}
from \((z, y) \in r^\downarrow\) obtain \(z'\) where \((z, z') \in r^*\) and \((y, z') \in r^*\) by \textbf{auto}
from \((CR \ r)\) and \((z, x) \in r^\downarrow\) and \((z, z') \in r^*\) have \((x, z') \in r^\downarrow\)
 by \textbf{(rule CR-divergence-imp-join)}
then obtain \(x'\) where \((x, x') \in r^*\) and \((z', x') \in r^*\) by \textbf{auto}
with \((y, z') \in r^*\) show \(?\text{thesis}\) by \textbf{auto}
\textbf{qed}
\textbf{next}

assume \(r^{***} \subseteq r^\downarrow\) then show \(CR \ r\) \textbf{unfolding} \(CR\text{-iff-meet-subset-join}\)
 using \textbf{meet-imp-conversion} by \textbf{auto}
\textbf{qed}

\textbf{lemma} \(CR\text{-imp-conversionIff-join}:
\textbf{assumes} \(CR \ r\) \textbf{shows} \(r^{***} = r^\downarrow\)
\textbf{proof}
\textbf{show} \(r^{***} \subseteq r^\downarrow\) \textbf{using} \textbf{CR-iff-conversion-imp-join assms} by \textbf{auto}
\textbf{next}
\textbf{show} \(r^\downarrow \subseteq r^{***}\) by \textbf{(rule join-imp-conversion)}
\textbf{qed}

\textbf{lemma} \(sym\text{-join}:: \text{sym} (join \ r)\) by \textbf{(auto simp: sym-def)}

\textbf{lemma} \(join\text{-sym}:: (s, t) \in A^\downarrow \Longrightarrow (t, s) \in A^\downarrow\) by \textbf{auto}

\textbf{lemma} \(CR\text{-join-left-1}::
\textbf{assumes} \(CR \ r\) and \((x, y) \in r^*\) and \((x, z) \in r^\downarrow\) \textbf{shows} \((y, z) \in r^\downarrow\)
\textbf{proof} –
\textbf{from} \((x, z) \in r^\downarrow\) obtain \(x'\) where \((x, x') \in r^*\) and \((z, x') \in r^\downarrow\) by \textbf{auto}
\textbf{from} \((CR \ r)\) and \((x, x') \in r^*\) and \((x, y) \in r^*\) have \((x, y) \in r^\downarrow\) by \textbf{auto}
\textbf{then have} \((y, x) \in r^\downarrow\) \textbf{using} \textbf{join-sym} by \textbf{best}
\textbf{from} \((CR \ r)\) \textbf{have} \(r^{***} = r^\downarrow\) by \textbf{(rule CR-imp-conversionIff-join)}
\textbf{from} \((y, x) \in r^\downarrow\) and \((x, z) \in r^\downarrow\) \textbf{show} \(?\text{thesis}\) \textbf{using} \textbf{conversion-trans unfolding} \textbf{trans-def} \(r^{***} = r^\downarrow\) \textbf{[symmetric]} by \textbf{best}
\textbf{qed}

\textbf{lemma} \(CR\text{-join-right-1}::
\textbf{assumes} \(CR \ r\) and \((x, y) \in r^\downarrow\) and \((y, z) \in r^*\) \textbf{shows} \((x, z) \in r^\downarrow\)
\textbf{proof} –
\textbf{have} \(r^{***} = r^\downarrow\) by \textbf{(rule CR-imp-conversionIff-join \ OF \ (CR \ r))}
\textbf{from} \((y, z) \in r^\downarrow\) \textbf{have} \((y, z) \in r^{***}\) by \textbf{auto}
\textbf{with} \((x, y) \in r^\downarrow\) \textbf{show} \(?\text{thesis}\) \textbf{unfolding} \(r^{***} = r^\downarrow\) \textbf{[symmetric]} \textbf{using} \textbf{conversion-trans unfolding} \textbf{trans-def} by \textbf{fast}
\textbf{qed}

\textbf{lemma} \(NF\text{-not-suc}::
\textbf{assumes} \((x, y) \in r^*\) and \(x \in NF \ r\) \textbf{shows} \(x = y\)
\textbf{proof} –

29
from \(x \in NF r \) have \(\forall y. (x, y) \notin r \) using NF-no-step by auto
then have \(x \notin Domain r \) using Domain-unfold by simp
from \((x, y) \in r^* \) show \(?thesis \) unfolding Not-Domain-rtrancl [OF \(x \notin Domain r \)] by simp
qed

lemma semi-complete-imp-conversionIff-same-NF:
assumes semi-complete r
shows \(((x, y) \in r^{***}) = (\forall u v. (x, u) \in r^1 \land (y, v) \in r^1 \rightarrow u = v) \)
proof –
from \(\text{assms} \) have \(WN r \) and \(CR r \) unfolding semi-complete-defs by auto
then have \(r^{***} = r^1 \) using CR-imp-conversionIff-join by auto
show \(?thesis \)
proof
assume \((x, y) \in r^{***} \)
from \((x, y) \in r^{***} \) have \((x, y) \in r^1 \) unfolding \(r^{***} = r^1 \) .
show \(\forall u v. (x, u) \in r^1 \land (y, v) \in r^1 \rightarrow u = v \)
proof (intro all_impl, elim conjE)
fix \(u v \) assume \((x, u) \in r^1 \) and \((y, v) \in r^1 \)
then have \((x, u) \in r^* \) and \((y, v) \in r^* \) and \(u \in NF r \) and \(v \in NF r \) by auto

from \(CR r \) and \((x, u) \in r^* \) and \((x, y) \in r^1 \) have \((u, y) \in r^1 \)
by (auto intro: CR-join-left-I)
then have \((y, u) \in r^1 \) using join-sym by best
with \((x, y) \in r^1 \) have \((x, u) \in r^1 \) unfolding \(r^{***} = r^1 \) [symmetric]
using conversion-trans unfolding trans-def by best
from \(CR r \) and \((x, y) \in r^1 \) and \((y, v) \in r^1 \) have \((x, v) \in r^1 \)
by (auto intro: CR-join-right-I)
then have \((v, x) \in r^1 \) using join-sym unfolding sym-def by best
with \((x, u) \in r^1 \) have \((v, u) \in r^1 \) unfolding \(r^{***} = r^1 \) [symmetric]
using conversion-trans unfolding trans-def by best
then obtain \(v' \) where \((v, v') \in r^* \) and \((u, v') \in r^* \) by auto
from \((u, v') \in r^* \) and \(u \in NF r \) have \(u = v' \) by (rule NF-not-suc)
from \((v, v') \in r^* \) and \(v \in NF r \) have \(v = v' \) by (rule NF-not-suc)
then show \(u = v \) unfolding \(u = v' \) by simp
qed
next
assume equal-NF: \(\forall u v. (x, u) \in r^1 \land (y, v) \in r^1 \rightarrow u = v \)
from \(WN r \) obtain \(u \) where \((x, u) \in r^1 \) by auto
from \(WN r \) obtain \(v \) where \((y, v) \in r^1 \) by auto
from \((x, u) \in r^1 \) and \((y, v) \in r^1 \) have \(u = v \) using equal-NF by simp
from \((x, u) \in r^1 \) and \((y, v) \in r^1 \) have \((x, v) \in r^* \) and \((y, v) \in r^* \)
unfolding \(u = v \) by auto
then have \((x, v) \in r^{***} \) and \((y, v) \in r^{***} \) by auto
from \((y, v) \in r^{***} \) have \((v, y) \in r^{***} \) using conversion-sym unfolding sym-def by best
with \((x, v) \in r^{***} \) show \((x, y) \in r^{***} \) using conversion-trans unfolding trans-def by best
qed

30
proof (diamond-imp-semi-confluence)

lemma CR-imp-UNC:

assumes CR r shows UNC r

proof - { fix x y assume x ∈ NF r and y ∈ NF r and (x, y) ∈ r∗∗∗ have r∗∗∗ = r by (rule CR-imp-conversionIff-join [OF assms]) from (x, y) ∈ r∗∗∗ have (x, y) ∈ r† unfolding (r∗∗∗ = r†) by simp
then obtain x′ where (x, x′) ∈ r* and (y, x′) ∈ r* by best
then have x = y unfolding (x = x′ by (rule UNF-imp-CR)) then show ?thesis by (auto simp: UNC-def)
qed

lemma WN-UNF-imp-CR:

assumes WN r and UNF r shows CR r

proof - { fix x y z assume (x, y) ∈ r* and (x, z) ∈ r* from assms obtain y′ where (y, y′) ∈ r† unfolding WN-defs by best with (x, y) ∈ r† have (x, y′) ∈ r† by auto
then have y′ = z using (UNF r) unfolding UNF-defs by auto
then show ?thesis by (auto simp: UNF-defs)
qed

definition diamond :: 'a rel ⇒ bool (◊) where ◊ r =⇒ (r−1 O r) ⊆ (r O r−1)

lemma diamond-I [intro]: (r−1 O r) ⊆ (r O r−1) ⇒ ◊ r unfolding diamond-def by simp

lemma diamond-E [elim]: ◊ r =⇒ ((r−1 O r) ⊆ (r O r−1) ⇒ P) ⇒ P unfolding diamond-def by simp

lemma diamond-imp-semi-confluence:

assumes ◊ r shows (r−1 O r*) ⊆ r†

proof (rule subrell)

fix y z assume (y, z) ∈ r−1 O r*
then obtain x where (x, y) ∈ r and (x, z) ∈ r* by best
then obtain n where (x, z) ∈ r−"n using rtrancl-imp-UN-relpow by best
with (x, y) ∈ r show (y, z) ∈ r† by best
proof (induct n arbitrary: x z y)

case 0 then show ?case by auto
next

case (Suc n)

31
from $(x, z) \in r^{-}\text{Suc } n$ obtain x' where $(x, x') \in r$ and $(x', z) \in r^{-}n$
using relpow-Suc-D2 by best
with $(x, y) \in r$ have $(y, x') \in (r^{-1} \text{ O } r)$ by auto
with $(\mathcal{O} r)$ have $(y, x') \in (r O r^{-1})$ by auto
then obtain y' where $(x', y') \in r$ and $(y, y') \in r$ by best
with Suc and $(x', z) \in r^{-}n$ have $(y', z) \in r^{+}$ by auto
with $(y, y') \in r$ show ?thesis by (auto intro: rtrancl-join-join)
qed

lemma semi-confluence-imp-CR:
assumes $(r^{-1} \text{ O } r^{*}) \subseteq r^{+}$ shows CR r
proof \{
fix $x \ y \ z$ assume $(x, y) \in r^{*}$ and $(x, z) \in r^{*}$
then obtain n where $(x, z) \in r^{-}n$ using rtrancl-imp-UN-relpow by best
with $(x, y) \in r^{*}$ have $(y, z) \in r^{+}$
proof (induct n arbitrary: $x \ y \ z$)
case 0 then show ?case by auto
next
case $(\text{Suc } n)$
from $(x, z) \in r^{-}\text{Suc } n$ obtain x' where $(x, x') \in r$ and $(x', z) \in r^{-}n$
using relpow-Suc-D2 by best
from $(x, x') \in r$ and $(x, y) \in r^{*}$ have $(x', y) \in (r^{-1} \text{ O } r^{*})$ by auto
with assms have $(x', y) \in r^{+}$ by auto
then obtain y' where $(x', y') \in r^{*}$ and $(y, y') \in r^{*}$ by best
with Suc and $(x', z) \in r^{-}n$ have $(y', z) \in r^{+}$ by simp
then obtain u where $(z, u) \in r^{*}$ and $(y', u) \in r^{*}$ by best
from $(y, y') \in r^{*}$ and $(y', u) \in r^{*}$ have $(y, u) \in r^{+}$ by auto
with $(z, u) \in r^{*}$ show ?case by best
qed

lemma diamond-imp-CR:
assumes $\mathcal{O} \ r$ shows CR r
using assms by (rule diamond-imp-semi-confluence [THEN semi-confluence-imp-CR])

lemma diamond-imp-CR':
assumes $\mathcal{O} \ s$ and $r \subseteq s$ and $s \subseteq r^{*}$ shows CR r
unfolding CR-iff-meet-subset-join
proof \-
from $\mathcal{O} \ s$ have CR s by (rule diamond-imp-CR)
then have $s^{+} \subseteq s^{+}$ unfolding CR-iff-meet-subset-join by simp
from $(r \subseteq s)$ have $r^{*} \subseteq s^{*}$ by (rule rtrancl-mono)
from $(s \subseteq r^{*})$ have $s^{*} \subseteq (r^{*})^{*}$ by (rule rtrancl-mono)
then have $s^{*} \subseteq r^{*}$ by simp
with $(r^{*} \subseteq s^{*})$ have $r^{*} = s^{*}$ by simp
show $r^{+} \subseteq r^{+}$ unfolding meet-def join-def rtrancl-converse $(r^{*} = s^{*})$
unfolding rtrancl-converse [symmetric] meet-def [symmetric]

32
lemma SN-imp-minimal:
assumes SN A
shows \(\forall x. x \in Q \rightarrow (\exists y. (z, y) \in A \rightarrow y \notin Q) \)
proof (rule ccontr)
assume \(\forall x. x \in Q \rightarrow (\exists y. (z, y) \in A \rightarrow y \notin Q) \)
then obtain Q x where x \in Q and \(\forall z \in Q. \exists y. ((z, y) \in A \land y \in Q) \) by auto
then have \(\forall z. \exists y. z \in Q \rightarrow (z, y) \in A \land y \in Q \) by auto
then have \(\exists f. \forall x. x \in Q \rightarrow (x, f x) \in A \land f x \in Q \) by (rule choice)
then obtain f where a:\(\forall x. x \in Q \rightarrow (x, f x) \in A \land f x \in Q \) (is \(\forall x. ?P x \))
by best
let \(?S = \lambda i. (f ^^ i) x \)
have \(?S 0 = x \) by simp
have \(\forall i. (\forall i. ?S i, ?S (Suc i)) \in A \land ?S (Suc i) \in Q \)
proof
fix i show \((\forall i. ?S i, ?S (Suc i)) \in A \land ?S (Suc i) \in Q \)
by (induct i) (auto simp: \(\forall x. ?S x \))
qed
with \(?S 0 = x \) have \(\exists S. S 0 = x \land \text{chain} A S \) by fast
with assms show False by auto
qed

lemma SN-on-imp-on-minimal:
assumes SN-on r \{x\}
shows \(\forall Q. x \in Q \rightarrow (\exists y. (z, y) \in r \rightarrow y \notin Q) \)
proof (rule ccontr)
assume \(\forall Q. x \in Q \rightarrow (\exists y. (z, y) \in r \rightarrow y \notin Q) \)
then obtain Q where x \in Q and \(\forall z \in Q. \exists y. ((z, y) \in r \land y \in Q) \) by auto
then have \(\forall z. \exists y. z \in Q \rightarrow (z, y) \in r \land y \in Q \) by auto
then have \(\exists f. \forall x. x \in Q \rightarrow (x, f x) \in r \land f x \in Q \) by (rule choice)
then obtain f where a:\(\forall x. x \in Q \rightarrow (x, f x) \in r \land f x \in Q \) (is \(\forall x. ?P x \))
by best
let \(?S = \lambda i. (f ^^ i) x \)
have \(?S 0 = x \) by simp
have \(\forall i. (\forall i. ?S i, ?S(Suc i)) \in r \land ?S(Suc i) \in Q \)
proof
fix i show \((\forall i. ?S i, ?S(Suc i)) \in r \land ?S(Suc i) \in Q \) by (induct i) (auto simp: \(\forall x. ?S x \))
qed
with \(?S 0 = x \) have \(\exists S. S 0 = x \land \text{chain} r S \) by fast
with assms show False by auto
qed

lemma minimal-imp-uf:
assumes \(\forall Q. x \in Q \rightarrow (\exists y. (z, y) \in r \rightarrow y \notin Q) \)
shows \(uf(r^{-1}) \)
proof (rule ccontr)
assume \(\neg \text{wf}(r^{-1}) \)
then have \(\exists P. (\forall x. (\forall y. (x, y) \in r \implies P y) \implies P x) \land (\exists x. \neg P x) \)
unfolding \(\text{wf-def} \) by \(\text{simp} \)
then obtain \(P x \) where \(\text{suc} : \forall x. (\forall y. (x, y) \in r \implies P y) \implies P x \) and \(\neg P x \)
by \(\text{auto} \)
let \(?Q = \{ x. \neg P x \} \)
from \(\langle \text{wf} (r^{-1}) \rangle \) have \(x \in ?Q \) by \(\text{simp} \)
then obtain \(z \) where \(z \in ?Q \) and \(\neg P z \)
by \(\text{best} \)
from \(\langle z \in ?Q \rangle \) have \(\neg P z \) by \(\text{simp} \)
with \(\langle \text{suc} \rangle \) obtain \(y \) where \((z, y) \in r \) and \(\neg P y \)
by \(\text{best} \)
then have \(y \in ?Q \) by \(\text{simp} \)
with \(\langle (z, y) \in r \rangle \) and \(\text{min} \) show \(\text{False} \) by \(\text{simp} \)
qed

lemmas \(\text{SN-imp-wf} = \text{SN-imp-minimal} \) [\(\text{THEN} \) \(\text{minimal-imp-wf} \)]

lemma \(\text{wf-imp-SN} \):
assumes \(\text{wf} (A^{-1}) \)
shows \(\text{SN} A \)
proof –
fix \(a \)
let \(?P = \lambda a. \neg(\exists S. S 0 = a \land \text{chain} A S) \)
from \(\langle \text{wf} (A^{-1}) \rangle \) have \(?P a \)
proof \(\text{induct} \)
\(\text{case} (\text{less} a) \)
then have \(\text{IH:} \\forall b. (a, b) \in A \implies ?P b \) by \(\text{auto} \)
show \(?P a \)
proof (rule \(\text{ccontr} \))
assume \(\neg ?P a \)
then obtain \(S \) where \(S 0 = a \) and \(\text{chain} A S \) by \(\text{auto} \)
then have \((S 0, S 1) \in A \) by \(\text{auto} \)
with \(\text{IH} \) have \(?P (S 1) \)
unfolding \((S 0 = a) \) by \(\text{auto} \)
with \(\langle \text{chain} A S \rangle \)
show \(\text{False} \)
by \(\text{auto} \)
qed
\(\text{qed} \)
then have \(\text{SN-on} A \{a\} \)
unfolding \(\text{SN-defs} \) by \(\text{auto} \)
} then show \(?\text{thesis} \) by \(\text{fast} \)
qed

lemma \(\text{SN-nat-gt} \):
\(\text{SN} \{ (a, b :: \text{nat}) . a > b \} \)
proof –
from \(\text{wf-less} \) have \(\text{wf} \) \((\{(x, y) . (x :: \text{nat}) > y\}^{-1}) \)
unfolding \(\text{converse-unfold} \)
by \(\text{auto} \)
from \(\text{wf-imp-SN} \) [\(\text{OF} \) this] show \(?\text{thesis} \).
qed
lemma SN-iff-wf: SN $A = \text{wf} (A^{-1})$ by (auto simp: SN-imp-wf wf-imp-SN)

lemma SN-imp-acyclic: SN $R \Longrightarrow$ acyclic R
using wf-acyclic [of R^{-1}, unfolded SN-iff-wf [symmetric]] by auto

lemma SN-induct:
assumes sn: SN r and step: $\forall a. (\forall b. (a, b) \in r \Longrightarrow P b) \Longrightarrow P a$
shows $P a$
using sn unfolding SN-iff-wf proof induct
 case (less a)
 with step show ?case by best
qed

lemmas SN-induct-rule = SN-induct [consumes 1, case-names IH, induct pred: SN]

lemma SN-on-induct [consumes 2, case-names IH, induct pred: SN-on]:
assumes SN: SN-on R A
 and $s \in A$
 and imp: $\forall t. (\forall u. (t, u) \in R \Longrightarrow P u) \Longrightarrow P t$
shows $P s$
proof
 let $?R = \text{restrict-SN } R R$
 let $?P = \lambda t. \text{SN-on } R \{t\} \Longrightarrow P t$
 have SN-on $R \{s\} \Longrightarrow P s$
proof (rule SN-induct [OF SN-restrict-SN-idemp [of R], of $?P$])
 fix a
 assume ind: $\forall b. (a, b) \in ?R \Longrightarrow \text{SN-on } R \{b\} \Longrightarrow P b$
 show $\text{SN-on } R \{a\} \Longrightarrow P a$
proof
 assume SN: SN-on $R \{a\}$
 show $P a$
proof (rule imp)
 fix b
 assume $(a, b) \in R$
 with SN step-preserves-SN-on [OF this SN]
 show $P b$ using ind [of b] unfolding restrict-SN-def by auto
qed
qed
with SN show $P s$ using $(s \in A)$ unfolding SN-on-def by blast
qed

lemma accp-imp-SN-on:
assumes $\forall x. x \in A \Longrightarrow \text{Wellfounded.accp } g x$
shows SN-on $\{(y, z). g z y\} A$
proof -

35
fix \(x \) assume \(x \in A \)
from assms \(\text{[OF this]} \)
have \(\text{SN-on} \ \{(y, z). \ g \ z \ y \} \ \{x\} \)
proof (induct rule: accp.induct)
 case (accI \(x \))
 show \(\text{?case} \)
 proof
 fix \(f \)
 assume \(x \): \(f \ 0 \in \{x\} \) and \(\text{steps}: \forall \ i. \ (f \ i, f \ (\text{Suc} \ i)) \in \{a. \ (\lambda(y, z). \ g \ z \ y) \ a\} \)
 then have \(g \ (f \ 1) \ x \) by auto
 from accI \(\text{[2]} \text{[OF this]} \) \(\text{steps} \ x \) show \(\text{False} \) unfolding \(\text{SN-on-def} \) by auto
 qed
 qed
} then show \(\text{?thesis} \) unfolding \(\text{SN-on-def} \) by blast
qed

lemma \(\text{SN-on-imp-accp} \):
assumes \(\text{SN-on} \ \{(y, z). \ g \ z \ y \} \ A \)
shows \(\forall x \in A. \ \text{Wellfounded.accp} \ g \ x \)
proof
 fix \(x \) assume \(x \in A \)
 with assms show \(\text{Wellfounded.accp} \ g \ x \)
proof (induct rule: SN-on-induct)
 case (IH \(x \))
 show \(\text{?case} \)
 proof
 fix \(y \)
 assume \(g \ y \ x \)
 with IH show \(\text{Wellfounded.accp} \ g \ y \) by simp
 qed
 qed
qed

lemma \(\text{SN-on-conv-accp} \):
\(\text{SN-on} \ \{(y, z). \ g \ z \ y \} \ \{x\} = \text{Wellfounded.accp} \ g \ x \)
using \(\text{SN-on-imp-accp} \ \text{[of} \ \{x\} \text{]} \)
 accp-imp-SN-on \(\text{[of} \ \{x\} \text{]} \ g \)
by auto

lemma \(\text{SN-on-conv-acc} \): \(\text{SN-on} \ \{(y, z). \ (z, y) \in r \} \ \{x\} \longleftrightarrow x \in \text{Wellfounded.acc} \ r \)
 unfolding \(\text{SN-on-conv-accp} \ \text{accp-acc-eq} \) ..

lemma \(\text{acc-imp-SN-on} \):
assumes \(x \in \text{Wellfounded.acc} \ r \) shows \(\text{SN-on} \ \{(y, z). \ (z, y) \in r \} \ \{x\} \)
using assms unfolding \(\text{SN-on-conv-acc} \) by simp

lemma \(\text{SN-on-imp-acc} \):
assumes \(SN-on \{ (y, z), (z, y) \in r \} \{ x \} \) shows \(x \in \text{Wellfounded.acc} r \)
using \(\text{assms unfolding} \ SN-on-conv-acc \) by \(\text{simp} \)

2.3 Newman’s Lemma

lemma \(\text{rtrancl-len-E [elim]} \):
assumes \((x, y) \in r^{*} \) obtains \(n \) where \((x, y) \in r^{-^n} \)
using \(\text{rtrancl-imp-UN-relpow [OF assms]} \) by \(\text{best} \)

lemma \(\text{relpow-Suc-E2' [elim]} \):
assumes \((x, z) \in A^{-^\text{Suc} n} \) obtains \(y \) where \((x, y) \in A \) and \((y, z) \in A^{*} \)
proof –
assume \(\text{assm}: \bigwedge y. (x, y) \in A \implies (y, z) \in A^{*} \implies \text{thesis} \)
from \(\text{relpow-Suc-E2 [OF assms]} \) obtain \(y \) where \((x, y) \in A \) and \((y, z) \in A^{-^n} \)
by \(\text{auto} \)
then have \((y, z) \in A^{*} \) using \(\text{relpow-imp-rtrancl by auto} \)
from \(\text{assm [OF } (x, y) \in A \text{ this]} \) show \(\text{thesis .} \)
qed

lemmas \(\text{SN-on-induct} \)' [\(\text{consumes 1, case-names IH} \) = \(\text{SN-on-induct} \) [\(\text{OF - singletonI} \)]]

lemma \(\text{Newman-local:} \)
assumes \(\text{SN-on } r \ X \) and \(\text{WCR: } \text{WCR-on } r \ \{ x. \ \text{SN-on } r \ \{ x \} \} \)
shows \(\text{CR-on } r \ X \)
proof –
\{
fix \(x \)
assume \(x \in X \)
with \(\text{assms have} \ \text{SN-on } r \ \{ x \} \) unfolding \(\text{SN-on-def} \) by \(\text{auto} \)
with \(\text{this have} \ \text{CR-on } r \ \{ x \} \)
proof (induct rule: \(\text{SN-on-induct}' \))
case (IH \(x \)) show \(?\text{case} \)
proof
fix \(y \) \(z \)
assume \((x, y) \in r^{*} \) and \((x, z) \in r^{*} \)
from \((x, y) \in r^{*} \) obtain \(m \) where \((x, y) \in r^{-^m} \) ..
from \((x, z) \in r^{*} \) obtain \(n \) where \((x, z) \in r^{-^n} \) ..
show \((y, z) \in r^{+} \)
proof (cases \(n \))
case 0
from \((x, z) \in r^{-^n} \) have \(eq: x = z \) by \(\text{(simp add: 0)} \)
from \((x, y) \in r^{*} \) show \(?\text{thesis unfolding eq .} \)
next
case (Suc \(n \'))
from \((x, z) \in r^{-^n} \) [\(\text{unfolded Suc} \) obtain \(t \) where \((x, t) \in r \) and \((t, z) \in r^{*} \)
show \(?\text{thesis} \)
proof (cases \(m \))
case 0
from \((x, y) \in r^{-^m} \) have \(eq: x = y \) by \(\text{(simp add: 0)} \)

37
from \((x, z) \in r^*\) show \(^?\)thesis unfolding eq ..

next

\[\begin{aligned}
&\text{case } (\text{Suc } m) \\
&\text{from } \langle x, y \rangle \in r^* m \ [\text{unfolded Suc}] \text{ obtain } s \text{ where } (x, s) \in r \text{ and } (s, y) \in r^* ..
\end{aligned}\]

from \(WCR\ IH(2)\) have \(WCR\ r \{x\} \) unfolding \(WCR\text{-on-def} \) by auto

with \(\langle x, s \rangle \in r \) and \(\langle x, t \rangle \in r \) have \(\langle s, t \rangle \in r^i \) by auto

then obtain \(u\) where \(\langle s, u \rangle \in r^* \) and \(\langle t, u \rangle \in r^* ..

from \(\langle x, s \rangle \in r \) \(IH(2)\) have \(SN\text{-on } r \{s\} \) by \((\text{rule step-preserves-SN-on})

from \(IH(1)\) \([OF \ (\langle x, s \rangle \in r \ this\] have \(CR\text{-on } r \{s\} \).

from this and \(\langle s, u \rangle \in r^* \) and \(\langle s, y \rangle \in r^* \) have \(\langle u, y \rangle \in r^i \) by auto

then obtain \(v\) where \(\langle u, v \rangle \in r^* \) and \(\langle y, v \rangle \in r^* ..

from \(\langle x, t \rangle \in r \) \(IH(2)\) have \(SN\text{-on } r \{t\} \) by \((\text{rule step-preserves-SN-on})

from \(IH(1)\) \([OF \ (\langle x, t \rangle \in r \ this\] have \(CR\text{-on } r \{t\} \).

moreover from \(\langle t, u \rangle \in r^* \) and \(\langle u, v \rangle \in r^* \) have \(\langle t, v \rangle \in r^i \) by auto

ultimately have \(\langle z, v \rangle \in r^i \) using \(\langle t, z \rangle \in r^* \) by auto

then obtain \(w\) where \(\langle z, w \rangle \in r^* \) and \(\langle v, w \rangle \in r^* ..

from \(\langle y, v \rangle \in r^* \) and \(\langle v, w \rangle \in r^* \) have \(\langle y, w \rangle \in r^* \) by auto

with \(\langle z, w \rangle \in r^* \) show \(^?\)thesis by auto

qed

\textbf{lemma} Newman: \(SN\ r \implies WCR\ r \implies CR\ r\)

using Newman-local \([of\ r\ \text{UNIV}]\)

unfolding \(WCR\text{-on-def} \) by auto

\textbf{lemma} Image-SN-on:

assumes \(SN\text{-on } r \ (r`` A)\)

shows \(SN\text{-on } r\ A\)

proof

fix \(f\)

assume \(f\ 0 \in A\) and chain: \(\text{chain } r\ f\)

then have \(f\ (\text{Suc } 0) \in r`` A\) by auto

with \(\text{assms} \) have \(SN\text{-on } r\ \{f\ (\text{Suc } 0)\} \) by \((\text{auto simp add: } f\ 0 \in A ; \text{SN-defs})\)

moreover have \(\neg\ SN\text{-on } r\ \{f\ (\text{Suc } 0)\} \)

proof

have \(f\ (\text{Suc } 0) \in \{f\ (\text{Suc } 0)\} \) by simp

moreover from chain have \(\text{chain } r\ (f \circ \text{Suc})\) by auto

ultimately show \(^?\)thesis by auto

qed

ultimately show \(\text{False}\) by simp

qed

\textbf{lemma} SN-on-Image-conv: \(SN\text{-on } r \ (r`` A) = SN\text{-on } r\ A\)

38
If all successors are terminating, then the current element is also terminating.

Lemma step-reflects-SN-on:

- **Assumes** \((\forall b. (a, b) \in r \implies SN r \{b\}) \)
- **Shows** \(SN r \{a\} \)
- **Using** \(assms \) and \(Image-SN-on \) of \(r \{a\} \) by \((auto \ simp: SN-defs) \)

Lemma SN-on-all-reducts-SN-on-conv:

- **SN-on** \(r \{a\} = (\forall b. (a, b) \in r \implies SN r \{b\}) \)
- **Using** \(SN-on-Image-conv \) of \(r \{a\} \) by \((auto \ simp: SN-defs) \)

Lemma SN-imp-SN-trancl:

- **Assumes** \(SN (R^+) \)
- **Shows** \(SN R \)
- **Using** \(assms \) by \((rule SN-on-trancl-imp-SN-on) \)

Lemma SN-trancl-SN-conv:

- **SN** \((R^+) = SN R \)
- **Using** \(SN-trancl-imp-SN \) of \(R \) by \(blast \)

Lemma SN-inv-image:

- **SN** \((inv-image R f) \)
- **Unfolding** \(SN-defs \) by \(simp \)

Lemma SN-subset:

- **SN** \(R = \implies R' \subseteq R \implies SN R' \)
- **Unfolding** \(SN-defs \) by \(blast \)

Lemma SN-pow-imp-SN:

- **Assumes** \(SN (A^{Suc n}) \)
- **Shows** \(SN A \)
- **Proof** \((rule ccontr) \)
 - **Assume** \(SN A \)
 - **Then obtain** \(S \) where \(chain A S \)
 - **Unfolding** \(SN-defs \) by \(auto \)
 - **From** \(chain-imp-relpow \) of \(this \)
 - **Have** \(step: \bigwedge i. (S i, S (i + (Suc n))) \in A^{Suc n} \).
 - **Let** \(?T = \lambda i. S (i * (Suc n)) \)
 - **Have** \(chain (A^{Suc n}) ?T \)
 - **Proof**
 - **Fix** \(i \) show \((?T i, ?T (Suc i)) \in A^{Suc n} \)
 - **Unfolding** \(mult-Suc \)
 - **Using** \(step \) of \(i * (Suc n) \) by \((simp \ only: add.commute) \)
 - **Qed**
 - **Then have** \(SN (A^{Suc n}) \)
 - **Unfolding** \(SN-defs \) by \(fast \)
 - **With** \(assms \) show \(False \) by \(simp \)
 - **Qed**

Lemma pow-Suc-subset-trancl:

- **Pow** \(R^{Suc n} \subseteq R^+ \)
- **Using** \(trancl-power \) of \(R \) by \(blast \)
lemma SN-imp-SN-pow:
assumes SN R shows SN (R "^\Suc n")
using SN-subset [where R=R\^+, OF SN-imp-SN-trancl [OF assms] pow-Suc-subset-trancl]
by simp

lemma SN-pow: SN R \iff SN (R \^\Suc n)
by (rule iffI, rule SN-imp-SN-pow, assumption, rule SN-pow-imp-SN)

lemma SN-on-trancl:
assumes SN-on r A shows SN-on (r\^+) A
using assms
proof (rule contrapos-pp)
 let \(?r = restrict-SN r r\)
 assume \(\neg SN-on (r\^+) A\)
 then obtain f where f 0 \in A \and chain: chain (r\^+) f by auto
 have SN \(?r by (rule SN-restrict-SN-idemp)
 then have SN (\(?r\^+) by (rule SN-imp-SN-trancl)
 have \(\forall i. (f 0, f i) \in r\^+\)
 proof
 fix i show (f 0, f i) \in r\^+
 proof (induct i)
 case 0 show ?case ..
 next
 case (Suc i)
 from chain have (f i, f (Suc i)) \in r\^+ ..
 with Suc show ?case by auto
 qed
 qed
 with assms have \(\forall i. SN-on r \{ f i \}\)
 using steps-preserve-SN-on [of f 0 - r]
 and (f 0 \in A)
 and SN-on-subset2 [of \{ f 0 \} A] by auto
 with chain have chain (\(?r\^+) f
 unfolding restrict-SN-trancl-simp
 unfolding restrict-SN-def by auto
 then have \(\neg SN-on (\(?r\^+) \{ f 0 \}\) by auto
 with \(\neg SN (\(?r\^+))\) have False by (simp add: SN-defs)
 then show \(\neg SN-on r A\) by simp
 qed

lemma SN-on-trancl-SN-on-cone: SN-on (R\^+) T = SN-on R T
using SN-on-trancl-imp-SN-on [of R] SN-on-trancl [of R] by blast

Restrict an ARS to elements of a given set.

definition restrict :: 'a rel \Rightarrow 'a set \Rightarrow 'a rel
where
 restrict r S = \{(x, y). x \in S \land y \in S \land (x, y) \in r\}
lemma \(SN\text{-}on\text{-}restrict\):
assumes \(SN\text{-}on\ r\ A\)
shows \(SN\text{-}on\ (\text{restrict } r\ S)\ A\) (is \(SN\text{-}on\ ?r\ A\))
proof (rule ccontr)
assume \(\neg\ SN\text{-}on\ ?r\ A\)
then have \(\exists f.\ f\ 0 \in A \land \text{chain } ?r\ f\) by auto
then have \(\exists f.\ f\ 0 \in A \land \text{chain } r\ f\) unfolding restrict-def by auto
with \(\langle SN\text{-}on\ r\ A\rangle\) show False by auto
qed

lemma \(restrict\text{-}rtrancl\):
\((\text{restrict } r\ S)\)\(^*\) \(\subseteq\) \(r\)\(^*\) (is \(?r\ \subseteq\ r\)\(^*\))
proof –
\{
fix \(x\ y\) assume \((x, y) \in \?r\)\(^*\) then have \((x, y) \in r\)\(^*\) unfolding restrict-def by auto
\} then show \(?thesis\) by auto
qed

lemma \(rtrancl\text{-}Image\text{-}step\):
assumes \(a \in r\)\(^*\) \(\{" A\)
and \((a, b) \in r\)\(^*\)
shows \(b \in r\)\(^*\) \(\{" A\)
proof –
from assms(1) obtain \(c\) where \(c \in A\) and \((c, a) \in r\)\(^*\) by auto
with assms have \((c, b) \in r\)\(^*\) by auto
with \(c \in A\) show \(?thesis\) by auto
qed

lemma \(WCR\text{-}SN\text{-}on\text{-}imp\text{-}CR\text{-}on\):
assumes \(WCR\ r\) and \(SN\text{-}on\ r\ A\)
shows \(CR\text{-}on\ r\ A\)
proof –
let \(?S\) = \(r\)\(^*\) \(\{" A\)
let \(?r\) = \(\text{restrict } r\ ?S\)
have \(\forall x.\ SN\text{-}on\ ?r\ \{x\}\)
proof
fix \(y\) have \(y \notin ?S\ \lor\ y \in ?S\) by simp
then show \(SN\text{-}on\ ?r\ \{y\}\)
proof
assume \(y \notin ?S\) then show \(?thesis\) unfolding restrict-def by auto
next
assume \(y \in ?S\)
then have \(y \in r\)\(^*\) \(\{" A\) by simp
with \(SN\text{-}on\text{-}Image\text{-}rtrancl\) [OF \(\langle SN\text{-}on\ r\ A\rangle\)]
have \(SN\text{-}on\ r\ \{y\}\) using \(SN\text{-}on\text{-}subset2\) [of \(\{y\}\) \(r\)\(^*\) \(\{" A\) by blast
then show \(?thesis\) by (rule \(SN\text{-}on\text{-}restrict\))
qed
qed
then have \(SN\ ?r\) unfolding \(SN\text{-}defs\) by auto
\{
fix \(x\ y\) assume \((x, y) \in r\)\(^*\) and \(x \in ?S\) and \(y \in ?S\)

41
then obtain \(n \) where \((x, y) \in r^{-n}\) and \(x \in \mathcal{S}^n \) and \(y \in \mathcal{S}^n\)
using `rtrancl-imp-UN-relpow` by `best`
then have \((x, y) \in \hat{r}^*\)
proof (induct \(n \) arbitrary: \(x y \))
 case 0 then show \(?case by simp\)
next
case (Suc \(n \))
 from \((x, y) \in \hat{r}^{-n}\) obtain \(x' \) where \((x, x') \in \hat{r}^{-n}\)
 using `relpow-Suc-D2` by `best`
 then have \((x, x') \in \hat{r}^*\) by `simp`
with \((x \in \mathcal{S})\) have \(x' \in \mathcal{S} \) by (rule `rtrancl-Image-step`)
with Suc and \((x', y) \in \hat{r}^{-n}\) have \((x', y) \in \hat{r}^*\) by `simp`
from \((x, x') \in \hat{r}^{-n}\) and \((x \in \mathcal{S})\) and \((x' \in \mathcal{S})\) have \((x, x') \in \hat{r}^*\)
unfolding `restrict-def` by `simp`
with \((x', y) \in \hat{r}^*\) show \(?case by simp\)
qed

\{ \}
then have \(a: \forall x\ y. \ (x, y) \in \hat{r}^* \land x \in \mathcal{S} \land y \in \mathcal{S} \rightarrow (x, y) \in \hat{r}^*\) by `simp`
\{ \}
 fix \(x'\ y\ z \) assume \((x', y) \in \hat{r}^*\) and \((x', z) \in \hat{r}^*\)
 then have \(x' \in \mathcal{S} \) and \(y \in \mathcal{S} \) and \(z \in \mathcal{S} \) and \((x', y) \in \hat{r}^*\) and \((x', z) \in \hat{r}^*\)
 unfolding `restrict-def` by `auto`
 with \(\langle WCR\ \hat{r}^*\rangle\) have \((y, z) \in \hat{r}^*\) by `auto`
 then obtain \(u \) where \((y, u) \in \hat{r}^*\) and \((z, u) \in \hat{r}^*\) by `auto`
 from \(\langle x' \in \mathcal{S}\rangle\) obtain \(x \) where \(x \in A\) and \((x, x') \in \hat{r}^*\) by `auto`
 from \(\langle x', y \rangle \in \hat{r}^*\) have \((x', y) \in \hat{r}^*\) by `auto`
 with \(\langle y, u \rangle \in \hat{r}^*\) have \((x', u) \in \hat{r}^*\) by `auto`
 with \(\langle x, x' \rangle \in \hat{r}^*\) have \((x, u) \in \hat{r}^*\) by `simp`
 then have \(u \in \mathcal{S} \) using \(x \in A\) by `auto`
 from \(\langle y \in \mathcal{S}\rangle\) and \(\langle u \in \mathcal{S}\rangle\) and \(\langle (y, u) \in \hat{r}^*\rangle\) have \((y, u) \in \hat{r}^*\) using \(a\) by `auto`
 from \(\langle z \in \mathcal{S}\rangle\) and \(\langle u \in \mathcal{S}\rangle\) and \(\langle (z, u) \in \hat{r}^*\rangle\) have \((z, u) \in \hat{r}^*\) using \(a\) by `auto`
 with \(\langle (y, u) \in \hat{r}^*\rangle\) have \((y, z) \in \hat{r}^*\) by `auto`
\} then have \(WCR\ \hat{r}^*\) by `auto`
 have \(\hat{r}\) using Newman [OF \(\langle SN\ \hat{r}\rangle\) \(\langle WCR\ \hat{r}\rangle\)] by `simp`
 \{ \}
 fix \(x\ y\ z \) assume \(x \in A\) and \((x, y) \in \hat{r}^*\) and \((x, z) \in \hat{r}^*\)
 then have \(y \in \mathcal{S} \) and \(z \in \mathcal{S} \) by `auto`
 have \(x \in \mathcal{S} \) using \(x \in A\) by `auto`
 from \(a\) and \(\langle (x, y) \in \hat{r}^*\rangle\) and \(x \in \mathcal{S} \) and \(y \in \mathcal{S} \) have \((x, y) \in \hat{r}^*\) by `simp`
 from \(a\) and \(\langle (x, z) \in \hat{r}^*\rangle\) and \(x \in \mathcal{S} \) and \(z \in \mathcal{S} \) have \((x, z) \in \hat{r}^*\) by `simp`
 with \(\langle CR\ \hat{r}\rangle\) and \(\langle (x, y) \in \hat{r}^*\rangle\) have \((y, z) \in \hat{r}^*\) by `auto`
 then obtain \(u\) where \((y, u) \in \hat{r}^*\) and \((z, u) \in \hat{r}^*\) by `best`
 then have \(\langle y, u \rangle \in \hat{r}^*\) and \(\langle z, u \rangle \in \hat{r}^*\) using `restrict-rtrancl` by `auto`
 then have \(\langle y, z \rangle \in \hat{r}^*\) by `auto`
} then show \(?\)thesis by auto
qed

lemma \(\text{SN-on-Image-normalizable}\):
 assumes \(\text{SN-on} \ r \ A\)
 shows \(\forall a \in A. \ \exists b. \ b \in r^\leftarrow \ A\)
proof
 fix \(a\) assume \(a \in A\)
 show \(\exists b. \ b \in r^\leftarrow \ A\)
 proof (rule ccontr)
 assume \(\neg (\exists b. \ b \in r^\leftarrow \ A)\)
 then have \(A \colon \forall b. \ (a, b) \in r^* \rightarrow b \notin NF \ r\) using \(a\) by auto
 then have \(a \notin NF \ r\) by auto
 let \(\{c \colon (a, c) \in r^* \rightarrow c \notin NF \ r\}\)
 have \(\exists c \in \{Q \colon (a, c) \in r \land b \in \{Q\}\}\)
 proof
 fix \(c\)
 assume \(c \in \{Q\}\)
 then have \((a, c) \in r^* \land c \notin NF \ r\) by auto
 then obtain \(d\) where \((a, d) \in r^*\) by simp
 with \(A\) have \(d \notin NF \ r\) by simp
 with \((c, d) \in r\) and \((a, c) \in r^*\)
 show \(\exists b. \ (c, b) \in r \land b \in \{Q\}\) by auto
 qed
 with \(\neg (\forall c \in \{Q\}. \ a \in \{Q\} \land (\exists b. \ (c, b) \in r \land b \in \{Q\})\) by auto
 then have \(\exists Q \colon a \in \{Q\} \land (\forall c \in \{Q\}. \ \exists b. \ (c, b) \in r \land b \in \{Q\}\) by (rule exI [of - \(\{Q\}\)])
 then have \(\neg (\forall Q. \ a \in Q \rightarrow (\exists c \in Q. \forall b. \ (c, b) \in r \rightarrow b \notin \{Q\}))\) by simp
 with \(\text{SN-on-imp-on-minimal} \ [\text{of} \ r \ a]\) have \(\neg \text{SN-on} \ r \ \{a\}\) by blast
 with assms and \(a \in A\) and \(\text{SN-on-subset2} \ [\text{of} \ \{a\} \ A \ r]\) show \(\text{False}\) by simp
 qed
qed

lemma \(\text{SN-on-imp-normalizability}\):
 assumes \(\text{SN-on} \ r \ \{a\}\) shows \(\exists b. \ (a, b) \in r^\leftarrow\)
 using \(\text{SN-on-Image-normalizable} \ [\text{OF} \ \text{assms}]\) by auto

2.4 Commutation

definition commute :: \('a\ rel \Rightarrow 'a\ rel \Rightarrow \text{bool}\)
 where \(\text{commute} \ r \ s \leftarrow \ ((r^{-1})^* \ O \ s^*) \subseteq (s^* \ O \ (r^{-1})^*)\)

lemma \(\text{CR-iff-self-commute}\): \(\text{CR} \ r = \text{commute} \ r \ r\)
 unfolding commute-def \(\text{CR-iff-meet-subset-join} \ \text{meet-def} \ \text{join-def}\)
 by simp
lemma rtrancl-imp-rtrancl-UN:
 assumes \((x, y) \in r^*\) and \(r \in I\)
 shows \((x, y) \in (\bigcup_{r \in I} r)^*\) (is \((x, y) \in ?r^*\))
 using assms proof induct
 case base then show \(?case by simp\)
 next
 case (step y z)
 then have \((x, y) \in ?r^*\) by simp
 from \((y, z) \in r\) and \((r \in I)\) have \((y, z) \in ?r^*\) by auto
 with \((x, y) \in ?r^*) show \(?case by auto\)
 qed

definition quasi-commute :: \('a rel \Rightarrow 'a rel \Rightarrow bool\) where
 quasi-commute \(r \leq s\) \iff (s O r) \subseteq (r O (r \cup s))^*

lemma rtrancl-union-subset-rtrancl-union-trancl: \((r \cup s)^* = (r \cup s)^*\)
proof
 show \((r \cup s)^* \subseteq (r \cup s)^*\)
 proof (rule subrelI)
 fix \(x y\) assume \((x, y) \in (r \cup s)^*\)
 then show \((x, y) \in (r \cup s)^*\)
 proof (induct)
 case base then show \(?thesis by auto\)
 next
 case (step y z)
 then have \((y, z) \in r \cup (y, z) \in s^+\) by auto
 then have \((y, z) \in (r \cup s)^*\)
 proof
 assume \((y, z) \in r\) then show \(?thesis by auto\)
 next
 assume \((y, z) \in s^+\)
 then have \((y, z) \in s^*\) by auto
 then have \((y, z) \in r^* \cup s^*\) by auto
 then show \(?thesis using rtrancl-Union-subset by auto\)
 qed
 with \((x, y) \in (r \cup s)^*\) show \(?case by simp\)
 qed
next
 show \((r \cup s)^* \subseteq (r \cup s)^*\)
 proof (rule subrelI)
 fix \(x y\) assume \((x, y) \in (r \cup s)^*\)
 then show \((x, y) \in (r \cup s)^*\)
 proof (induct)
 case base then show \(?case by auto\)
 next
 case (step y z)
 then have \((y, z) \in (r \cup s)^*\) by auto
 qed

44
with ⟨(x, y) ∈ (r ∪ s)^*⟩, show ?case by auto
qed
qed
qed

lemma qc-imp-qc-trancl:
assumes quasi-commute r s shows quasi-commute r (s^+)
unfolding quasi-commute-def
proof (rule subrelI)
 fix x z
 assume ⟨(x, z) ∈ s^+ O r⟩
 then obtain y where (x, y) ∈ s^+ and (y, z) ∈ r by best
 then show ⟨(x, z) ∈ r ∪ (r ∪ s)^*⟩
 proof (induct arbitrary: z)
 case (base y)
 then have ⟨(x, z) ∈ (s O r)⟩ by auto
 with assms have ⟨(x, z) ∈ r ∪ (r ∪ s)^*⟩ unfolding quasi-commute-def by auto
 then show ?case using rtrancl-union-subset-rtrancl-union-trancl by auto
 next
 case (step a b)
 then have ⟨(a, z) ∈ (s O r)⟩ by auto
 with assms have ⟨(a, z) ∈ r ∪ (r ∪ s)^*⟩ unfolding quasi-commute-def by auto
 then obtain u where ⟨(a, u) ∈ r and (u, z) ∈ (r ∪ s)^*⟩ by best
 with ⟨(u, z) ∈ (r ∪ s)^*⟩ have ⟨(v, z) ∈ (r ∪ s)^*⟩ by auto
 with ⟨(x, v) ∈ r⟩ show ?case by auto
 qed
qed

lemma steps-reflect-SN-on:
assumes ¬ SN-on r {b} and (a, b) ∈ r^*
shows ¬ SN-on r {a}
using SN-on-Image-rtrancl [of r {a}]
and assms and SN-on-subset2 [of {b} r^* {a} r] by blast

lemma chain-imp-not-SN-on:
assumes chain r f
shows ¬ SN-on r {f i}
proof –
 let ?f = λj. f (i + j)
 have ?f 0 ∈ {f i} by simp
 moreover have chain r ?f using assms by auto
 ultimately have ?f 0 ∈ {f i} ∧ chain r ?f by blast
 then have ∃g. g 0 ∈ {f i} ∧ chain r g by (rule exI [of ?f])
 then show ?thesis unfolding SN-defs by auto
qed

45
lemma quasi-commute-imp-SN:
assumes $SN \ r$ and $SN \ s$ and quasi-commute $r \ s$
shows $SN \ (r \cup s)$

proof
\begin{itemize}
\item have quasi-commute $r \ (s^+)$ by (rule qc-imp-qc-trancl \cite{OF \ quasi-commute \ r \ s})
\item let $\mathcal{B} = \{a. \neg SN-on \ (r \cup s) \ \{a\}\}$
\item \begin{itemize}
\item assume $\neg SN(r \cup s)$
\item then obtain a where $a \in \mathcal{B}$ unfolding $SN-defs$ by fast
\item from $\langle SN r \rangle$ have $\forall Q. \ \exists zQ. \ \forall y. \ (z, y) \in r \longrightarrow y \notin Q$
\item by (rule SN-imp-minimal)
\item then have $\forall x. \ x \in \mathcal{B} \longrightarrow (\exists z \in S. \ \forall y. \ (z, y) \in r \longrightarrow y \notin \mathcal{B})$ by (rule spec [where $x = \mathcal{B}$])
\item with $\langle a \in \mathcal{B} \rangle$ obtain b where $b \in \mathcal{B}$ and min: $\forall y. \ (b, y) \in r \longrightarrow y \notin \mathcal{B}$ by auto
\end{itemize}
\item from $\langle b \in \mathcal{B} \rangle$ obtain S where $S 0 = b$ and
\item chain: chain $(r \cup s) S$ unfolding $SN-on-def$ by auto
\item let $\bar{S} = \lambda i. \ S(Suc i)$
\item have $\langle \bar{S} 0 = S / i \rangle$ by simp
\item from chain have chain $(r \cup s) \bar{S}$ by auto
\item with $\langle \bar{S} 0 = S / i \rangle$ have $\neg SN-on \ (r \cup s) \ \{S / i\}$ unfolding $SN-on-def$ by auto
\item from $\langle S 0 = b \rangle$ and chain have $(b, S / i) \in r \cup s$ by auto
\item with min and $\neg SN-on \ (r \cup s) \ \{S / i\}$: have $(b, S / i) \in s$ by auto
\item let $\bar{i} = LEAST i. \ (S / i, S(Suc i)) \notin s$
\item \begin{itemize}
\item assume chain $s \ S$
\item with $\langle S 0 = b \rangle$ have $\neg SN-on \ s \ \{b\}$ unfolding $SN-on-def$ by auto
\item with $\langle SN \ s \rangle$ have $False$ unfolding $SN-defs$ by auto
\end{itemize}
\item then have $\exists i. \ (S / i, S(Suc i)) \notin s$ by auto
\item then have $(S \ ?i, S(Suc \ ?i)) \notin s$ by (rule LeastI-ex)
\item with chain have $(S \ ?i, S(Suc \ ?i)) \in r$ by auto
\item have ini: $\forall i < \bar{i}. \ (S / i, S(Suc i)) \in s$ using not-less-Least by auto
\item \begin{itemize}
\item fix i assume $i < \bar{i}$ then have $(b, S(Suc i)) \in s^+$
\item proof (induct i)
\item case 0 then show ?case using $\langle (b, S / i) \in s \rangle$ and $\langle S 0 = b \rangle$ by auto
\item next
\item case $(Suc k)$
\item then have $(b, S(Suc k)) \in s^+$ and $Suc k < \bar{i}$ by auto
\item with $\forall i < \bar{i}. \ (S / i, S(Suc i)) \in s$ have $(S(Suc k), S(Suc(Suc k))) \in s$ by fast
\item with $\langle (b, S(Suc k)) \in s^+ \rangle$ show ?case by auto
\item qed
\end{itemize}
\item then have pref: $\forall i < \bar{i}. \ (b, S(Suc i)) \in s^+$ by auto
\item from $\langle (b, S / i) \in s \rangle$ and $\langle S 0 = b \rangle$ have $(S 0, S(Suc 0)) \in s$ by auto
\item \begin{itemize}
\item assume $\bar{i} = 0$
\end{itemize}
\end{itemize}
\end{itemize}
from \texttt{ex} have \((S \; \exists i, S(Suc \; \exists i)) \not\in s\) by \texttt{(rule \; LeastI-ex)}
with \((S \; 0, S(Suc \; 0)) \in s\) have \texttt{False} unfolding \(\exists i = 0\) by \texttt{simp} \}
then have \(0 < \exists i\) by \texttt{auto}
then obtain \(j\) where \(\exists i = Suc \; j\) unfolding \texttt{gr0-conv-Suc} by \texttt{best}
with \texttt{ini} have \((S(\exists i - Suc \; 0), S(Suc(\exists i - Suc \; 0))) \in s\) by \texttt{auto}
with \texttt{pref} have \((b, S(Suc \; j)) \in s^+\) unfolding \(\exists i = Suc \; j\) by \texttt{auto}
then have \((b, S \; \exists i) \in s^+\) unfolding \(\exists i = Suc \; j\) by \texttt{auto}
with \texttt{with} \((S \; \exists i, S(Suc \; \exists i)) \in r\) have \((b, S(Suc \; \exists i)) \in (s^+ \; O \; r)\) by \texttt{auto}
with \texttt{with} \((\texttt{quasi-commute} \; r \; (s^+))\) have \((b, S(Suc \; \exists i)) \in r \; O \; (r \; \cup \; s^+)\)
unfolding \texttt{quasi-commute-def} by \texttt{auto}
then obtain \(c\) where \((b, c) \in r\) and \((c, S(Suc \; \exists i)) \in (r \; \cup \; s^+)\) by \texttt{best}
from \((b, c) \in r\) have \((b, c) \in (r \; \cup \; s)^*\) by \texttt{auto}
from \texttt{with} \((c, S(Suc \; \exists i)) \in (r \; \cup \; s)^*\) have \((c, S(Suc \; \exists i)) \in (r \; \cup \; s)^*\)
unfolding \texttt{rtrancl-union-subset-rtrancl-union-trancl} by \texttt{auto}
with \texttt{with} \((\neg \; SN-on \; (r \; \cup \; s) \; \{S(Suc \; \exists i)\})\) by \texttt{auto}
then have \(c \in ?B\) by \texttt{simp}
with \((b, c) \in r\) and \texttt{min} have \texttt{False} by \texttt{auto} \}
then show \(?thesis\) by \texttt{auto}
qed

\subsection*{2.5 Strong Normalization}

\textbf{lemma} \texttt{non-strict-into-strict}:
assumes \texttt{compat} \(NS \; O \; S \subseteq S\)
and \texttt{steps} \((s, t) \in (NS^*) \; O \; S\)
shows \((s, t) \in S\)
using \texttt{steps} \texttt{proof}
fix \(x\) \(u\) \(z\)
assume \((s, t) = (x, z)\) and \((x, u) \in NS^*\) and \((u, z) \in S\)
then have \((s, u) \in NS^*\) and \((u, t) \in S\) by \texttt{auto}
then show \(?thesis\)
proof \texttt{induct} \texttt{rule:} \texttt{rtrancl.induct} \texttt{case} \texttt{rtrancl-refl} \texttt{x} \then show \(?case\).
next \case \texttt{rtrancl-into-rtrancl} \texttt{a} \texttt{b} \texttt{c}
with \texttt{compat} \texttt{show} \(?case\) by \texttt{auto}
qed

\textbf{lemma} \texttt{comp-trancl}:
assumes \texttt{R \; O \; S \subseteq S} shows \texttt{R \; O \; S^+ \subseteq S^+}
proof \texttt{(rule subrelI)}
fix \(w\) \(z\) assume \((w, z) \in R \; O \; S^+\)
then obtain \(x\) where \texttt{R-step} \((w, x) \in R\) and \texttt{S-seq} \((x, z) \in S^+\) by \texttt{best}
from tranclD [OF S-seq] obtain y where S-step: \((x, y) \in S\) and S-seq': \((y, z) \in S^*\) by auto
from R-step and S-step have \((w, y) \in R O S\) by auto
with assms have \((w, y) \in S\) by auto
with S-seq' show \((w, z) \in S^+\) by simp
qed

lemma comp-rtrancl-trancl:
assumes comp: \(R O S \subseteq S\)
and seq: \((s, t) \in (R \cup S)^* O S\)
shows \((s, t) \in S^+\)
using seq proof
fix \(x u z\)
assume \((s, t) = (x, z)\) and \((x, u) \in (R \cup S)^*\) and \((u, z) \in S\)
then have \((s, u) \in (R \cup S)^*\) and \((u, t) \in S^+\) by auto
then show ?thesis
proof (induct rule: rtrancl.induct)
case (rtrancl-refl x) then show ?case .
next
case (rtrancl-into-rtrancl a b c)
then have \((b, c) \in S\) by auto
with ⟨\((x, a) \in (s \cup r)^*\) ⟩ show ?thesis by simp
next
assume \((b, c) \in R\)
with comp-trancl [OF comp] rtrancl-into-rtrancl show ?thesis by auto
qed
qed

lemma trancl-union-right: \(r^+ \subseteq (s \cup r)^+\)
proof (rule subrelI)
fix \(x y\)
assume \((x, y) \in r^+\) then show \((x, y) \in (s \cup r)^+\)
proof (induct)
case base then show ?case by auto
next
case (step a b)
then have \((a, b) \in (s \cup r)^+\) by auto
with \(\langle(x, a) \in (s \cup r)^*\) show ?case by auto
qed
qed

lemma restrict-SN-subset: restrict-SN R S \(\subseteq R\)
proof (rule subrelI)
\textbf{proof} \ \ \ \textbf{lemma} \ chain-Un-SN-on-imp-first-step: \\
assumes \ (R \cup S) \ t \ \text{and} \ SN-on \ S \ \{t \ 0\} \\
\shows \ \exists i. \ ((t, i, t \ (Suc \ i)) \in R \ \land \ \forall j<i. \ ((t, j, t \ (Suc \ j)) \in S \ \land \ (t, j, t \ (Suc \ j)) \notin R) \\
\textbf{proof} – \\
\textbf{from} \ (SN-on \ S \ \{t \ 0\}) \ \text{obtain} \ i \ \text{where} \ ((t, i, t \ (Suc \ i)) \notin S \ \text{by} \ \text{blast} \\
\ \text{with} \ \text{assms have} \ ((t, i, t \ (Suc \ i)) \in R \ (is \ ?P \ i) \ \text{by} \ \text{auto} \\
\ \text{let} \ ?i = \ Least \ ?P \\
\ \text{from} \ (?P \ ?i \ \text{have} \ ?P \ ?i \ \text{by} \ \text{rule} \ \text{LeastI}) \\
\ \text{have} \ \forall j<i. \ ((t, j, t \ (Suc \ j)) \notin R \ \text{using} \ \text{not-less-Least} \ \text{by} \ \text{auto} \\
\ \text{moreover with} \ \text{assms have} \ \forall j<i. \ ((t, j, t \ (Suc \ j)) \in S \ \text{by} \ \text{best} \\
\ \text{ultimately have} \ \forall j<i. \ ((t, j, t \ (Suc \ j)) \in S \ \land \ (t, j, t \ (Suc \ j)) \notin R \ \text{by} \ \text{best} \\
\ \text{with} \ (?P \ ?i) \ \text{show} \ ?thesis \ \text{by} \ \text{best} \\
\textbf{qed} \\

\textbf{lemma} \ first-step: \\
\assumes \ C \in A \cup B \ \text{and} \ steps: \ (x, y) \in C^* \ \text{and} \ Bstep: \ (y, z) \in B \\
\shows \ \exists y. \ (x, y) \in A^* \ O B \\
\textbf{proof} \ \text{(induct rule: converse-rtrancl-induct)} \\
\ \text{case} \ base \\
\ \text{show} \ ?case \ \text{using} \ Bstep \ \text{by} \ \text{auto} \\
\textbf{next} \\
\ \text{case} \ (step \ u \ x) \\
\ \text{from} \ \text{step(1)|unfolded} \ C \ \\
\ \text{show} \ ?case \\
\ \textbf{proof} \\
\ \text{assume} \ (u, x) \in B \\
\ \text{then show} \ ?thesis \ \text{by} \ \text{auto} \\
\textbf{next} \\
\ \text{assume} \ uw: \ (u, x) \in A \\
\ \text{from} \ \text{step(3)} \ \text{obtain} \ y \ \text{where} \ (x, y) \in A^* \ O B \ \text{by} \ \text{auto} \\
\ \text{then obtain} \ z \ \text{where} \ (x, z) \in A^* \ \text{and} \ \text{step}: \ (z, y) \in B \ \text{by} \ \text{auto} \\
\ \text{with} \ \text{uw have} \ (u, z) \in A^* \ \text{by} \ \text{auto} \\
\ \text{with} \ \text{step have} \ (u, y) \in A^* \ O B \ \text{by} \ \text{auto} \\
\ \text{then show} \ ?thesis \ \text{by} \ \text{auto} \\
\textbf{qed} \\
\textbf{qed} \\

\textbf{lemma} \ first-step-O: \\
\assumes \ C \in A \cup B \ \text{and} \ steps: \ (x, y) \in C^* \ O B \\
\shows \ \exists y. \ (x, y) \in A^* \ O B \\
\textbf{proof} – \\
\ \text{from} \ \text{steps obtain} \ z \ \text{where} \ (x, z) \in C^* \ \text{and} \ (z, y) \in B \ \text{by} \ \text{auto} \\
\ \text{from} \ \text{first-step} \ [OF \ C \ \text{this}] \ \text{show} \ ?thesis .
lemma firstStep:
 assumes LSR: \(L = S \cup R \) and \(xyL: (x, y) \in L^* \)
 shows \((x, y) \in R^* \lor (x, y) \in R^* O S O L^* \)
proof (cases \((x, y) \in R^* \))
 case True
 then show \(\text{thesis} \) by simp
next
 case False
 let \(?SR = S \cup R \)
 from xyL and LSR have \((x, y) \in \text{SR}^* \) by simp
 from this and False have \((x, y) \in R^* O S O \text{SR}^* \) by simp
proof (induct rule: rtrancl-induct)
 case base then show \(\text{case} \) by simp
next
 case (step y z)
 then show \(\text{case} \) by simp
 proof (cases \((x, y) \in R^* \))
 case False with step have \((x, y) \in R^* O S O \text{SR}^* \) by simp
 from this obtain \(u \) where \(xu: (x, u) \in R^* O S \) and \(uy: (u, y) \in \text{SR}^* \) by force
 from \((y, z) \in \text{SR} \) have \((y, z) \in S \) by blast
 with xu show \(\text{thesis} \) by auto
 qed
 with True show \(\text{thesis} \) by auto
 qed
 qed
 with LSR show \(\text{thesis} \) by simp
qed

lemma non-strict-ending:
 assumes chain: chain \((R \cup S) t \)
 and comp: \(R O S \subseteq S \) and \(SN: SN-on S \{t 0\} \)
 shows \(\exists j. \forall i \geq j. (t i, t (Suc i)) \in R \setminus S \)
proof (rule ccontr)
 assume \(\neg \text{thesis} \)
 with chain have \(\forall i. \exists j. j \geq i \land (t j, t (Suc j)) \in S \) by blast
 from choice \(\text{OF this} \) obtain \(f \) where S-steps: \(\forall i. i \leq f i \land (t (f i), t (Suc f i)) \in R \setminus S \) by blast
 qed
 qed
 qed
 with LSR show \(\text{thesis} \) by simp
qed
let \(\text{?t} = \lambda i. ((\text{Suc } \circ f)^\langle i \rangle \text{ ?}) \)

have S-chain: \(\forall i. (t i, t (\text{Suc } f i)) \in S^+ \)

proof
 fix i
 from S-steps have leg: \(i \leq f i \) and step: \((t f i), t(\text{Suc } f i)) \in S \) by auto
 from chain-imp-rtrancl [OF chain leg] have \((t i, t(\text{Suc } f i)) \in (R \cup S)^+ \).
 with step have \((t i, t(\text{Suc } f i)) \in (R \cup S)^+ \) \(O S \) by auto
 from comp-rtrancl-trancl [OF comp this] show \((t i, t(\text{Suc } f i)) \in S^+ \).
qed

then have chain \((S^+)^?t\) by simp
moreover have \(\text{SN-on} (S^+) \{ \text{?t } 0 \} \) using \(\text{SN-on-trancl} \) [OF \(\text{SN} \)] by simp
ultimately show False unfolding \(\text{SN-defs} \) by best
qed

lemma SN-on-subset1:
 assumes \(\text{SN-on} \ r \ A \) and \(s \subseteq r \)
 shows \(\text{SN-on} \ s \ A \)
 using assms unfolding \(\text{SN-defs} \) by blast

lemmas SN-on-mono = SN-on-subset1

lemma rtrancl-fun-conv:
 \(((s, t) \in R^*) = (\exists f n. f 0 = s \land f n = t \land (\forall i < n. (f i, f (\text{Suc } i)) \in R)) \)
unfolding rtrancl-is-UN-relpow using relpow-fun-conv [where \(R = R \)] by auto

lemma compat-tr-compat:
 assumes \(\text{NS } O S \subseteq S \)
 shows \(\text{NS }^* O S \subseteq S \)
 using non-strict-into-strict [where \(S = S \) and \(\text{NS } = \text{NS} \)] assms by blast

lemma right-comp-S [simp]:
 assumes \((x, y) \in S O (S O S^* O \text{NS }^* \cup \text{NS }^*) \)
 shows \((x, y) \in (S O S^* O \text{NS }^*) \)
proof–
 from assms have \((x, y) \in (S O S O S^* O \text{NS }^*) \cup (S O \text{NS }^*) \) by auto
 then have \(xy: (x, y) \in (S O (S O S^*) O \text{NS }^*) \cup (S O \text{NS }^*) \) by auto
 have \(S O S^* \subseteq S^* \) by auto
 with \(xy \) have \((x, y) \in (S O S^* O \text{NS }^*) \cup (S O \text{NS }^*) \) by auto
 then show \((x, y) \in (S O S^* O \text{NS }^*) \) by auto
qed

lemma compatible-SN:
 assumes \(\text{SN}: \text{SN } S \)
 and \(\text{compat}: \text{NS } O S \subseteq S \)
 shows \(\text{SN} (S O S^* O \text{NS }^*) \) (is \(\text{SN } ?A \))
proof
 fix F assume chain: \(\text{chain } ?A F \)
 from compat compat-tr-compat have \(\text{tr-compat }: \text{NS }^* O S \subseteq S \) by blast

51
have \(\forall i. (\exists y. z. (F i, y) \in S \land (y, z) \in S^* \land (z, F (Suc i)) \in NS^*) \)

proof

fix \(i \)

from chain have \((F i, F (Suc i)) \in (S O S^* O NS^*)\) by auto
then show \(\exists y. z. (F i, y) \in S \land (y, z) \in S^* \land (z, F (Suc i)) \in NS^* \)
unfolding relcomp-def using mem-Collect-eq by auto

qed

then have \(\exists f. (\forall i. (\exists z. (F i, f i) \in S \land ((f i, z) \in S^*) \land (z, F (Suc i)) \in NS^*)) \)
by (rule choice)
then obtain \(f \)
where \(\forall i. (\exists z. (F i, f i) \in S \land ((f i, z) \in S^*) \land (z, F (Suc i)) \in NS^*) \).
then have \(\exists g. \forall i. (F i, f i) \in S \land (f i, g i) \in S^* \land (g i, F (Suc i)) \in NS^* \)
by (rule choice)
then obtain \(g \) where \(\forall i. (F i, f i) \in S \land (f i, g i) \in S^* \land (g i, F (Suc i)) \in NS^* \).
then have \(\forall i. (f i, g i) \in S^* \land (g i, F (Suc i)) \in NS^* \land (F (Suc i), f (Suc i)) \in S \)
by auto
then have \(\forall i. (f i, g i) \in S^* \land (g i, F (Suc i)) \in S^* \) unfolding relcomp-def
using tr-compat by auto
then have all:\(\forall i. (f i, g i) \in S^* \land (g i, F (Suc i)) \in S^* \)
by auto
have \(\forall i. (f i, f (Suc i)) \in S^* \)
proof

fix \(i \)
from all have \((f i, g i) \in S^* \land (g i, F (Suc i)) \in S^* \).
then show \((f i, f (Suc i)) \in S^* \) using transitive-closure-trans by auto

qed

then have \(\exists x. f 0 = x \land chain (S^+) \) by auto
then obtain \(x \) where \(f 0 = x \land chain (S^+) \) by auto
then have \(\exists f. f 0 = x \land chain (S^+) \) by auto
then have \(\neg SN\text{-}on (S^+) \{x\} \) by auto
then have \(\neg SN \) (S^+) unfolding SN-defs by auto
then have \(wf\text{-}S\text{-}S\text{-}Conv\)\(: \neg wf ((S^+)\text{-}1)\) using SN-iff-wf by auto
from \(SN \) have \(wf (S\text{-}1) \) using SN-imp-wf \(\text{[where } \neg \text{R}=S\text{] by simp} \)
with \(wf\text{-}converse\text{-}trancl \) \(wf\text{-}Conv \) show \(False \) by auto

qed

lemma compatible-rtrancl-split:

assumes \(\text{compat: } NS O S \subseteq S \)
and steps: \((x, y) \in (NS \cup S)^* \)
shows \((x, y) \in S \) \(O \) \(S^* \) \(O \) \(NS^* \) \(\cup \) \(NS^* \)
proof

from steps have \(\exists n. (x, y) \in (NS \cup S)^{n} \) using rtrancl-imp-relpow \(\text{[where } R=NS \cup S\text{] by auto} \)
then obtain \(n \) where \((x, y) \in (NS \cup S)^{n} \) by auto
then show \((x, y) \in S \) \(O \) \(S^* \) \(O \) \(NS^* \) \(\cup \) \(NS^* \)
proof (induct \(n \) arbitrary: \(x \), simp)

case \(Suc \) \(n \)

52
assume \((x, y) \in (NS \cup S)^\sim \) (Suc \(m\))
then have \(\exists \ z. (x, z) \in (NS \cup S) \land (z, y) \in (NS \cup S)^\sim \) \(m\)
using relpow-Suc-D2 \[\text{where} \ ?R=NS \cup S\] by auto
then obtain \(z\) where \(xz; (x, z) \in (NS \cup S)\) and \(zy; (z, y) \in (NS \cup S)^\sim \) \(m\)
by auto
with \(Suc\) have \(zy; (z, y) \in S O S^* O NS^* \cup NS^*\) by auto
then show \((x, y) \in S O S^* O NS^* \cup NS^*\)
proof \((cases \ (x, z) \in NS)\)
 case \(\text{True}\)
 from compat compat-tr-compat have \(trCompat; NS^* O S \subseteq S\) by blast
 from \(zy \ True\) have \((x, y) \in (NS O S O S^* O NS^*) \cup (NS O NS^*)\) by auto
 then have \((x, y) \in ((NS O S) O S^* O NS^*) \cup (NS O NS^*)\) by auto
 then have \((x, y) \in ((NS^* O S) O S^* O NS^*) \cup (NS O NS^*)\) by auto
 with \(trCompat\) have \(xz; (x, y) \in (S O S^* O NS^*) \cup (NS O NS^*)\) by auto
 have \(NS O NS^* \subseteq NS^*\) by auto
 with \(xy\) show \((x, y) \in (S O S^* O NS^*) \cup NS^*\) by auto
 next
 case \(\text{False}\)
 with \(xz\) have \(xz; (x, z) \in S\) by auto
 with \(zy\) have \((x, y) \in S O (S O S^* O NS^* \cup NS^*)\) by auto
 then show \((x, y) \in (S O S^* O NS^*) \cup NS^*\) using right-comp-S by simp
qed
qed

lemma compatible-conv:
 assumes \(\text{compat; } NS O S \subseteq S\)
 shows \((NS \cup S)^* O S O (NS \cup S)^* = S O S^* O NS^*\)
proof –
 let \(?NSuS = NS \cup S\)
 let \(?NSS = S O S^* O NS^*\)
 let \(?midS = ?NSuS^* O S O ?NSuS^*\)
 have \(\?NSS \subseteq ?midS\) by regexp
 have \(\?NSuS^* O S \subseteq (?NSS \cup NS^*) \ O S\)
 using compatible-rtrancl-split \[\text{where} \ S = S \ \text{and} \ NS = NS\] compat by blast
 also have \(\ldots \subseteq ?NSS O S \cup NS^* \ O S\) by auto
 also have \(\ldots \subseteq ?NSS O S \cup S\) using compat compat-tr-compat \[\text{where} \ S = S\)
 and \(\text{NS = NS}\) by auto
 also have \(\ldots \subseteq S O \ ?NSuS^*\) by regexp
 finally have \(?midS \subseteq S O ?NSuS^* \ O ?NSuS^*\) by blast
 also have \(\ldots \subseteq S O (?NSS \cup NS^*)\)
 using compatible-rtrancl-split \[\text{where} \ S = S \ \text{and} \ NS = NS\] compat by blast
 also have \(\ldots \subseteq ?NSS\) by regexp
 finally have \(two; ?midS \subseteq ?NSS\).
 from \(\text{one two}\) show \(?thesis\) by auto
qed

lemma compatible-\(\text{SN}'\):

assumes $\text{compat}: NS O S \subseteq S$ and $\text{SN}: SN S$
shows $\text{SN}((NS \cup S)^* O S O (NS \cup S)^*)$

using compatible-conv and SN-empty

SN-on-weakening

lemma $\text{rtrancl-diff-decomp}$:

assumes $(x, y) \in A^* - B^*$
shows $(x, y) \in A^* O (A - B) O A^*$

proof –

from assms have $A: (x, y) \in A^* \text{ and } B: (x, y) \notin B^*$ by auto
from A have $\exists k. (x, y) \in A^{\sim k}$ by (rule $\text{rtrancl-imp-relpow}$)
then obtain k where $Ak: (x, y) \in A^{\sim k}$ by auto
from $Ak B$ show $(x, y) \in A^* O (A - B) O A^*$

proof (induct k arbitrary: x)

next

<table>
<thead>
<tr>
<th>case ${ \text{Suc i} }</th>
</tr>
</thead>
</table>

then have $B: (x, y) \notin B^* \text{ and } ASk: (x, y) \in A^{\sim i}$ \text{ by auto}

from ASk have $\exists z. (x, z) \in A \land (z, y) \in A^{\sim i}$ using relpow-Suc-D2

\text{where } ?R=A \text{ by auto}

then obtain z where $xz: (x, z) \in A \text{ and } (z, y) \in A^{\sim i}$ \text{ by auto}

then have $zy: (z, y) \in A^*$ using $\text{relpow-imp-rtrancl}$ by auto

from xz show $(x, y) \in A^* O (A - B) O A^*$

proof (cases $(x, z) \in B$)

case $\{ \text{False} \}$

with $xz \ yz$ show $(x, y) \in A^* O (A - B) O A^*$ \text{ by auto}

next

<table>
<thead>
<tr>
<th>case ${ \text{True} }</th>
</tr>
</thead>
</table>

then have $(x, z) \in B^*$ \text{ by auto}

have $[(x, z) \in B^*; (z, y) \in B^*] \Rightarrow (x, y) \in B^*$ using rtrancl-trans [of $x \ y$ B]

\text{by auto}

with $\{ \langle x, z \rangle \in B^*; (x, y) \notin B^* \}$ have $(z, y) \notin B^*$ \text{ by auto}

with $\text{Suc} \langle (z, y) \in A^{\sim i} \rangle$ have $(z, y) \in A^* O (A - B) O A^*$ \text{ by auto}

with xz have $zy: (x, y) \in A O A^* O (A - B) O A^*$ \text{ by auto}

have $A O A^* O (A - B) O A^* \subseteq A^* O (A - B) O A^*$ \text{ by regexp}

from this xz show $(x, y) \in A^* O (A - B) O A^*$

using subsetD \text{ where } ?A=A \ O A^* O (A - B) O A^* \text{ by auto}

qed

qed

lemma SN-empty [simp]: $\text{SN } \{ \}$ \text{ by auto}

lemma SN-on-weakening:

assumes $\text{SN-on } R1 \ A$
shows $\text{SN-on } (R1 \cap R2) \ A$

proof –

{}
assume ∃S. S 0 ∈ A ∧ chain (R1 ∩ R2) S
then obtain S where
 S0: S 0 ∈ A and
 SN: chain (R1 ∩ R2) S
 by auto
 from SN have SN': chain R1 S by simp
 with S0 and assms have False by auto
}
 then show ?thesis by force
qed

definition ideriv :: 'a rel ⇒ 'a rel ⇒ ('a ⇒ bool) ⇒ bool where
 ideriv R S as (⇒ (∀ i. (as i, as (Suc i)) ∈ R ∪ S) ∧ (INFM i. (as i, as (Suc i)) ∈ R))

lemma ideriv-mono: R ⊆ R' ⇒ S ⊆ S' ⇒ ideriv R S as ⇒ ideriv R' S' as
 unfolding ideriv-def INFM-nat by blast

fun
 shift :: ('a ⇒ bool) ⇒ 'a ⇒ 'a
 where
 shift f j = (λ i. f (i+j))

lemma ideriv-split:
 assumes ideriv: ideriv R S as
 and nideriv: ¬ ideriv (D ∩ (R ∪ S)) (R ∪ S − D) as
 shows ∃ i. ideriv (R − D) (S − D) (shift as i)
 proof –
 have RS: R − D ∪ (S − D) = R ∪ S − D by auto
 from ideriv [unfolded ideriv-def]
 have as: j i. (as i, as (Suc i)) ∈ R ∪ S
 and inf: INFM i. (as i, as (Suc i)) ∈ R by auto
 show ?thesis
 proof (cases INFM i. (as i, as (Suc i)) ∈ D ∩ (R ∪ S))
 case True
 have ideriv (D ∩ (R ∪ S)) (R ∪ S − D) as
 unfolding ideriv-def
 using as True by auto
 with nideriv show ?thesis ..
 next
 case False
 from False [unfolded INFM-nat]
 obtain i where Dn: j. i < j =⇒ (as j, as (Suc j)) ∉ D ∩ (R ∪ S)
 by auto
 from Dn as have as: j i. i < j =⇒ (as j, as (Suc j)) ∈ R ∪ S − D by auto
 show ?thesis
 proof (rule exI [of - Suc i], unfold ideriv-def RS, insert as, intro conjI, simp, unfold INFM-nat, intro allI)

55
fix m
from inf [unfolded INFM-nat] obtain j where j: j > Suc i + m
 and R: (as j, as (Suc j)) ∈ R by auto
with as [of j] have RD: (as j, as (Suc j)) ∈ R − D by auto
show ∃ j > m. (shift as (Suc i) j, shift as (Suc i) (Suc j)) ∈ R − D
 by (rule exI [of - j - Suc i], insert j RD, auto)
qed
qed
qed

lemma ideriv-SN:
 assumes SN: SN S
 and compat: NS O S ⊆ S
 and R: R ⊆ NS ∪ S
 shows ¬ ideriv (S ∩ R) (R − S) as
proof
 assume ideriv (S ∩ R) (R − S) as
 with R have steps: ∀ i. (as i, as (Suc i)) ∈ NS ∪ S
 and inf: INFM i. (as i, as (Suc i)) ∈ S ∩ R unfolding ideriv-def by auto
 from non-strict-ending [OF steps compat] SN
 obtain i where i: ∃ j. j ≥ i ⇒ (as j, as (Suc j)) ∈ NS − S by fast
 from inf [unfolded INFM-nat] obtain j where j > i and (as j, as (Suc j)) ∈ S by auto
 with i [of j] show False by auto
qed

next
assume ?O
show ?S
 unfolding INFM-nat-le
proof
 fix m
 from (?S) [unfolded INFM-nat-le]
 obtain k where k: k ≥ m and p: P (shift f n k) by auto
 show ∃ k ≥ m. P (f k)
 by (rule exI [of - k + n], insert k p, auto)
qed
next
assume ?O
show ?S
 unfolding INFM-nat-le
proof
 fix m
 from (?O) [unfolded INFM-nat-le]
 obtain k where k: k ≥ m + n and p: P (f k) by auto
 show ∃ k ≥ m. P (shift f n k)
 by (rule exI [of - k - n], insert k p, auto)
qed
lemma rtrancl-list-conv:

\[(s, t) \in R^* \iff (\exists ts. \text{last} (s \# ts) = t \land (\forall i < \text{length} ts. ((s \# ts) ! i, (s \# ts) ! \text{Suc} i) \in R))\]

(is \(t = t\))

proof

assume \(?r\)
then obtain \(ts\) where \(\text{last} (s \# ts) = t \land (\forall i < \text{length} ts. ((s \# ts) ! i, (s \# ts) ! \text{Suc} i) \in R)\)
then show \(?l\)
proof (induct \(ts\) arbitrary; \(s\), simp)

next

assume \(?l\)
from rtrancl-imp-seq [OF this]

obtain \(S n\) where \(s: S 0 = s\) and \(t: S n = t\) and \(\text{steps}: \forall i < n. (S i, (S (\text{Suc} i)) \in R)\)

let \(?ts = \text{map (λ i. } S (\text{Suc} i)) [0 ..< n]\)

qed

lemma SN-reaches-NF:

assumes \(\text{SN-on } r \{x\}\)
shows \(\exists y. (x, y) \in r^* \land y \in \text{NF } r\)

proof (induct rule: \(\text{SN-on-induct'}\))

case (IH \(x\))

show \(?case\)
proof (cases \(x \in \text{NF } r\))
case True
then show \(?thesis\) by auto
next
case False
then obtain \(y\) where \(step: (x, y) \in r\) by auto
from IH \([OF this]\) obtain \(z\) where \(steps: (y, z) \in r^*\) and \(NF: z \in NF \ r\) by auto
show \(?thesis\)
 by (intro exI, rule conjI \([OF - NF]\), insert step steps, auto)
qed

lemma \(SN-WCR\)-reaches-NF:
assumes \(SN: SN\text{-}on \ r \ \{x\}\)
 and \(WCR: WCR\text{-}on \ r \ \{x. \ SN\text{-}on \ r \ \{x\}\}\)
shows \(\exists! \ y. (x, y) \in r^* \land y \in NF \ r\)

proof –
from \(SN\text{-}reaches-NF \ [OF SN]\) obtain \(y\) where \(steps: (x, y) \in r^* \land NF: y \in NF \ r \) by auto
show \(?thesis\)
proof (rule, rule conjI \([OF steps NF]\))
fix \(z\)
assume \(steps': (x, z) \in r^* \land z \in NF \ r\)
from Newman-local \([OF SN WCR]\) have \(CR\text{-}on \ r \ \{x\}\) by auto
from \(CR\text{-}onD \ [OF this - steps]\) steps' have \((y, z) \in r^*\) by simp
from \(join\text{-}NF\text{-}imp\text{-eq} \ [OF this NF]\) steps' show \(z = y\) by simp
qed

definition \(some\text{-}NF:: \('a \ rel \Rightarrow 'a \Rightarrow 'a\) where
some\text{-}NF \(r\ x = (SOME \ y. (x, y) \in r^* \land y \in NF \ r)\)

lemma \(some\text{-}NF:\)
assumes \(SN: SN\text{-}on \ r \ \{x\}\)
shows \((x, some\text{-}NF \ r \ x) \in r^* \land some\text{-}NF \ r \ x \in NF \ r\)
using someI-ex \([OF SN\text{-}reaches-NF \ [OF SN]\]\)
unfolding some\text{-}NF\text{-}def .

lemma \(some\text{-}NF\text{-}WCR:\)
assumes \(SN: SN\text{-}on \ r \ \{x\}\)
 and \(WCR: WCR\text{-}on \ r \ \{x. \ SN\text{-}on \ r \ \{x\}\}\)
 and \(steps: (x, y) \in r^*\)
 and \(NF: y \in NF \ r\)
shows \(y = some\text{-}NF \ r \ x\)

proof –
let \(\lambda y. (x, y) \in r^* \land y \in NF \ r\)
from \(SN\text{-}WCR\text{-}reaches-NF \ [OF SN WCR]\)
have one: \(\exists! \ y. \ ?p \ y\).
from \(steps NF\) have \(y: \ ?p \ y\) ..

58
from some-NF [OF SN] have some: ?p (some-NF r x).
from one some y show ?thesis by auto
qed

lemma some-NF-UNF:
 assumes UNF: UNF r
 and steps: (x, y) ∈ r^*
 and NF: y ∈ NF r
 shows y = some-NF r x
proof –
 let ?p = λ y. (x, y) ∈ r^* ∧ y ∈ NF r
 from steps NF have py: ?p y by simp
 then have pNF: ?p (some-NF r x) unfolding some-NF-def
 by (rule someI)
 from py have y: (x, y) ∈ r! by auto
 from pNF have nf: (x, some-NF r x) ∈ r! by auto
 from UNF [unfolded UNF-on-def] y nf show ?thesis by auto
qed

definition the-NF A a = (THE b. (a, b) ∈ A!)

custom
 fixes A
 assumes SN: SN A and CR: CR A
begin
lemma the-NF: (a, the-NF A a) ∈ A!
proof –
 obtain b where ab: (a, b) ∈ A! using SN by (meson SN-imp-WN UNIV-I
WN-onE)
 moreover have (a, c) ∈ A! ⇒ c = b for c
 using CR and ab by (meson CR-divergence-imp-join join-NF-imp-eq normalizability-E)
 ultimately have ∃ b. (a, b) ∈ A! by blast
 then show ?thesis unfolding the-NF-def by (rule theI')
qed

lemma the-NF-NF: the-NF A a ∈ NF A
using the-NF by (auto simp: normalizability-def)

lemma the-NF-step:
 assumes (a, b) ∈ A
 shows the-NF A a = the-NF A b
using the-NF and assms
by (meson CR SN SN-imp-WN conversionI' r-into-rtrancl semi-complete-imp-conversionIff-same-NF
semi-complete-onI)

lemma the-NF-steps:
 assumes (a, b) ∈ A^*
 shows the-NF A a = the-NF A b
using assms by (induct) (auto dest: the-NF-step)
lemma the-NF-conv:
 assumes \((a, b) \in A^{**}\)
 shows the-NF \(A\) a = the-NF \(A\) b
 using assms
 by (meson CR WN-on-def the-NF semi-complete-imp-conversionIff-same-NF semi-complete-onI)
end

definition weak-diamond ::
 \('a \ rel \Rightarrow bool\ (w\Diamond)\ where\n w\Diamond r \longleftrightarrow (r^{-1} O r) - Id \subseteq (r O r^{-1})\nlemma weak-diamond-imp-CR:
 assumes wd: \(w\Diamond r\)
 shows CR r
proof (rule semi-confluence-imp-CR, rule)
 fix \(x\ y\)
 assume \((x, y) \in r^{-1} O r^*\)
 then obtain \(z\) where \(\text{step}: (z, x) \in r\) and \(\text{steps}: (z, y) \in r^*\) by auto
 from steps
 have \(\exists u. (x, u) \in r^* \land (y, u) \in r^=\)
proof (induct)
 case base
 by (rule exI [of - x], insert step, auto)
next
 case (step y' y)
 from step(3) obtain \(u\) where \(\text{xu}: (x, u) \in r^*\) and \(\text{yu}: (y', u) \in r^=\) by auto
 from y'u have \((y', u) \in r \lor y' = u\) by auto
 then show \(?case\)
proof
 assume y'u: \(y' = u\)
 with xu step(2) have xy: \((x, y) \in r^*\) by auto
 show \(?thesis\)
 by (intro exI conjI, rule xy, simp)
next
 assume \((y', u) \in r\)
 with step(2) have uy: \((u, y) \in r^{-1} O r\) by auto
 show \(?thesis\)
proof (cases u = y)
 case True
 show \(?thesis\)
 by (intro exI conjI, rule xu, unfold True, simp)
next
 case False
 with uy
 \(\text{wd [unfolded weak-diamond-def]}\) obtain \(u'\) where \(uu': (u, u') \in r\)
 and \(yu': (y, u') \in r\) by auto
from xu uu' have xu: (x, u') ∈ r* by auto
show ?thesis by (intro exI conjI, rule xu, insert yu', auto)
qed
qed
qed
then show (x, y) ∈ r↓ by auto
qed

lemma steps-imp-not-SN-on:
fixes t :: 'a ⇒ 'b
and R :: 'b rel
assumes steps: ∃ x. (t x, t (f x)) ∈ R
shows ¬ SN-on R {t x}
proof
let ?U = range t
assume SN-on R {t x}
from SN-on-imp-on-minimal [OF this, rule-format, of ?U]
obtain tz where tz: tz ∈ range t and min: ∃ y. (tz, y) ∈ R ⇒ y ∉ range t
by auto
from tz obtain z where tz: tz = t z by auto
from steps [of z] min [of t (f z)] show False unfolding tz by auto
qed

lemma steps-imp-not-SN:
fixes t :: 'a ⇒ 'b
and R :: 'b rel
assumes steps: ∃ x. (t x, t (f x)) ∈ R
shows ¬ SN R
proof
from steps-imp-not-SN-on [of t f R, OF steps]
show ?thesis unfolding SN-def by blast
qed

lemma steps-map:
assumes fg: (∀ t u R . P t ⇒ Q R ⇒ (t, u) ∈ R ⇒ P u ∧ (f t, f u) ∈ g R
and t: P t
and R: Q R
and S: Q S
shows ((t, u) ∈ R* ⇒ (f t, f u) ∈ (g R)*)
∧ ((t, u) ∈ R* O S O R* ⇒ (f t, f u) ∈ (g R)^* O (g S) O (g R)^*)
proof
{ fix t u
assume (t, u) ∈ R* and P t
then have P u ∧ (f t, f u) ∈ (g R)^*
proof (induct)
case (step u v)
from step(3)(OF step(4)]) have Pa: P u and steps: (f t, f u) ∈ (g R)^* by
from $f\ g$ [OF Ps R \(\text{step}(2)\)] have Pv: $P\ v$ and \(\text{step}: (f\ u, f\ v) \in (g\ R)^*\) by auto
with steps have $(f\ t, f\ v) \in (g\ R)^*$ by auto
with Pv show $?\text{case}\ by\ \text{simp}$
qed simp
}
} note main = this
note main[t] = main [OF - t]
from main [of u] have one: $(t, u) \in R^* \longrightarrow (f\ t, f\ u) \in (g\ R)^*$ by simp
show $?\text{thesis}$
proof (rule conjI [OF one \text{impl}])
assume $(t, u) \in R^* \ O\ S\ O\ R^*$
then obtain $s\ v$ where $ts: (t, s) \in R^*$ and $sv: (s, v) \in S$ and $vu: (v, u) \in R^*$ by auto
from main [OF ts] have Ps: $P\ s$ and $ts: (f\ t, f\ s) \in (g\ R)^*$ by auto
from $f\ g$ [OF $Ps\ sv$] have Pv: $P\ v$ and $sv: (f\ s, f\ v) \in g\ S$ by auto
from main [OF $vu\ Pv$] have vu: $(f\ v, f\ u) \in (g\ R)^*$ by auto
qed

2.6 Terminating part of a relation

inductive-set
$SN\text{-part}:: \ 'a\ rel \Rightarrow \ 'a\ set$
for $r:: \ 'a\ rel$
where
$SN\text{-partI}: (\land y. (x, y) \in r \Rightarrow y \in SN\text{-part} \ r) \Rightarrow x \in SN\text{-part} \ r$

The accessible part of a relation is the same as the terminating part (just two names for the same definition – modulo argument order). See $(\land y. (y, \ ?x) \in \ ?r \Rightarrow y \in \text{Wellfounded.acc} \ ?r) \Rightarrow \ ?x \in \text{Wellfounded.acc} \ ?r$.

Characterization of $SN\text{-on}$ via terminating part.

lemma $SN\text{-on-SN}\text{-part-conv}$:
$SN\text{-on} \ r\ A \longleftrightarrow A \subseteq SN\text{-part} \ r$
proof –
\{
\begin{align*}
\text{fix } x & \text{ assume } SN\text{-on} \ r\ A \text{ and } x \in A \\
& \text{ then have } x \in SN\text{-part} \ r \text{ by (induct) (auto intro: } SN\text{-partI})
\end{align*}
\}
moreover \{
\begin{align*}
\text{fix } x & \text{ assume } x \in A \text{ and } A \subseteq SN\text{-part} \ r \\
& \text{ then have } x \in SN\text{-part} \ r \text{ by auto}
\end{align*}
\}
then have $SN\text{-on} \ r \ \{x\}$ by (induct) (auto intro: step-reflects-SN-on)
\}
ultimately show $?\text{thesis}\ by\ (force\ simp: \text{SN-defs})$
qed

Special case for “full” termination.

lemma $SN\text{-SN}\text{-part-UNIV-conv}$:
$SN\ r \longleftrightarrow SN\text{-part} \ r = UNIV$
using $SN\text{-on-SN}\text{-part-conv} \ [\text{of } r \ \text{UNIV}]$ by auto

62
lemma closed-imp-rtrancl-closed: assumes $L \subseteq A$
and $R: R \subseteq A$
shows $\{ t \mid s, s \in L \land (s,t) \in R^* \} \subseteq A$

proof –
{
 fix s t
 assume $(s,t) \in R^*$ and $s \in L$
 hence $t \in A$
 by (induct, insert L R, auto)
}
thus $?thesis$ by auto
qed

lemma trancl-steps-relpow: assumes $a \subseteq b^+$
shows $(x,y) \in a^\cdot n \implies \exists m. m \geq n \land (x,y) \in b^\cdot m$

proof (induct n arbitrary: y)
case 0 thus $?case$ by (intro exI [of - 0], auto)
next
case $(Suc \ n \ z)$
 from $Suc(2)$ obtain y where $xy: (x,y) \in a^\cdot n$ and $yz: (y,z) \in a$ by auto
 from $Suc(1)(OF xy)$ obtain m where $m: m \geq n$ and $xy: (x,y) \in b^\cdot m$ by auto
 from yz assms have $(y,z) \in b^\cdot (m + k)$ unfolding relpow-add by auto
 with k m show $?case$ by (intro exI [of - $m + k$], auto)
qed

lemma relpow-image: assumes $f: \:\\
assumes sn: SN-on R {a}
and IH: \(\forall x. \text{SN-on R } \{ x \} \Rightarrow [\forall y. (x, y) \in R \Rightarrow P y] \Rightarrow P x \)
shows \(P a \)

proof
from sn SN-on-cone-acc [of \(R^{-1} \) a] have a: a \in \text{termi } R by auto

show \(\ldots \)
proof (rule Wellfounded.acc.induct [OF a, of P], rule IH)
fix x
assume \(\forall y. (y, x) \in R^{-1} \Rightarrow y \in \text{termi } R \)
from this [folded SN-on-cone-acc]
show SN-on-R \(\{ x \} \) by simp fast
qed auto

qed

lemma partially-localize-CR:
\(CR r \iff (\forall x y z. (x, y) \in r \wedge (x, z) \in r^* \rightarrow (y, z) \in \text{join } r) \)

proof
assume CR r
thus \(\forall x y z. (x, y) \in r \wedge (x, z) \in r^* \rightarrow (y, z) \in \text{join } r \) by auto

next
assume 1: \(\forall x y z. (x, y) \in r \wedge (x, z) \in r^* \rightarrow (y, z) \in \text{join } r \)
show CR r
proof
fix a b c
assume 2: a \in UNIV and 3: \((a, b) \in r^* \) and 4: \((a, c) \in r^* \)
then obtain n where \((a, c) \in r^m \) using rtrancl-is-UN-relpow by fast
with 2 3 have \((b, c) \in \text{join } r \)
proof (induct n arbitrary: a b c)

case 0 thus \(\ldots \) by auto

next
case (Suc m)
from Suc(4) obtain d where 5: \((a, d) \in r^m \) and 6: \((d, c) \in r \) by auto
from Suc(1) [OF Suc(2) Suc(3) ad] have \((b, d) \in \text{join } r \).
with 1 6 have \((b, c) \in \text{join } r \)
proof (induct n arbitrary: a b c)

case 0 thus \(\ldots \) by metis

qed

qed

definition strongly-confluent-on :: 'a rel \Rightarrow 'a set \Rightarrow bool
where
\(\text{strongly-confluent-on } r A \leftrightarrow (\forall x \in A. \forall y z. (x, y) \in r \wedge (x, z) \in r \rightarrow (\exists u. (y, u) \in r^* \wedge (z, u) \in r^*)) \)

abbreviation strongly-confluent :: 'a rel \Rightarrow bool
where
\(\text{strongly-confluent } r \equiv \text{strongly-confluent-on } r \text{ UNIV} \)

lemma strongly-confluent-on-E11:

64
\[
\exists u. \ (y, u) \in r^* \land (z, u) \in r^=
\]

unfolding strongly-confluent-on-def **by** blast

lemma strongly-confluentI [intro]:
\[[\forall x \ y \ z. \ (x, y) \in r \Rightarrow (x, z) \in r \Rightarrow \exists u. \ (y, u) \in r^* \land (z, u) \in r^=] \Rightarrow \text{strongly-confluent } r \]

unfolding strongly-confluent-on-def **by** auto

lemma strongly-confluent-E1n:
assumes scr: strongly-confluent r
shows \((x, y) \in r^= \Rightarrow (x, z) \in r^* \Rightarrow \exists u. \ (y, u) \in r^* \land (z, u) \in r^=\)
proof (induct n arbitrary: \(x \ y \ z\))
 case (Suc \(m\))
 from Suc(3) obtain \(w\) where \(xw: (x, w) \in r^m\) and \(wz: (w, z) \in r\) **by** auto
 from Suc(1) \[OF \ Suc(2) \ xw \] obtain \(u\) where \(yu: (y, u) \in r^*\) and \(wu: (w, u) \in r^=\) **by** auto
 from strongly-confluent-on-E11 \[OF \ scr, \ of \ wz \ yu \ wz \] \show \ ?case
 by (metis UnE converse-rtrancl-into-rtrancl iso-tuple-UNIV-I pair-in-Id-conv rtrancl-trans)
qed auto

lemma strong-confluence-imp-CR:
assumes strongly-confluent r
shows CR r
proof –
 \{ fix \(x \ y \ z\)
 have \((x, y) \in r \Rightarrow (x, z) \in r^* \Rightarrow (y, z) \in \text{join } r\)
 by (cases \(x = y\), insert strongly-confluent-E1n \[OF \ assms, \ blast+\]) \}
 then show \(\text{CR } r\) **using** partially-localize-CR **by** blast
qed

lemma WCR-alt-def: \(WCR \ A \iff A^{-1} \ O \ A \subseteq A^1\) **by** (auto simp: WCR-defs)

lemma NF-imp-SN-on: \(a \in NF R \Rightarrow SN-on R \{a\}\) **unfolding** SN-on-def NF-def **by** blast

lemma Union-sym: \((s, t) \in \bigcup i \leq n. \ (S \ i)^* \iff (t, s) \in \bigcup i \leq n. \ (S \ i)^*\) **by** auto

lemma peak-iff: \((x, y) \in A^{-1} \ O \ B \iff (\exists u. \ (u, x) \in A \land (u, y) \in B)\) **by** auto

lemma CR-NF-conv:
assumes \(\text{CR } r\) and \(t \in NF r\) and \((u, t) \in r^***\)
shows \((u, t) \in r^1\)
using assms
unfolding CR-imp-conversionIff-join \[OF \ :CR \ r\] **by** (auto simp: NF-iff-no-step normalizability-def)
lemma NF-join-imp-reach:
 assumes y ∈ NF A and (x, y) ∈ A↓
 shows (x, y) ∈ A∗
using assms by (auto simp: join-def) (metis NF-not-suc rtrancl-converseD)

lemma conversion-O-conversion [simp]:
 A*** O A*** = A***
 by (force simp: converse-def)

lemma trans-O-iff: trans A ᵗ A O A ⊆ A unfolding trans-def by auto
lemma refl-O-iff: refl A ᵗ Id ⊆ A unfolding refl-on-def by auto

lemma relpow-Suc: r ᵗ Suc n = r O r ᵗ n
proof (induct n)
case (Suc n)
 show ?case unfolding relpow.simps(2)[of - r ᵗ - n]
 by (simp add: Suc converse-relcomp)
qed simp

lemma conversion-mono: A ⊆ B ⇒ A*** ⊆ B***
 by (auto simp: conversion-def intro: rtrancl-mono)

lemma conversion-conversion-idemp [simp]: (A***)'*** = A***
by auto

lemma lower-set-imp-not-SN-on:
 assumes s ∈ X ∀ t ∈ X. ∃ u ∈ X. (t, u) ∈ R shows ¬ SN-on R {s}
by (meson SN-on-imp-on-minimal assms)

lemma SN-on-Image-rtrancl-iff[simp]: SN-on R (R* ᵗ X) ←→ SN-on R X (is ??l = ??r)
proof(intro iffI)
 assume ??l show ??r by (rule SN-on-subset2[OF - (?l), auto)
qed (fact SN-on-Image-rtrancl)

lemma O-mono1: R ⊆ R’ ⇒ S O R ⊆ S O R’ by auto
lemma O-mono2: R ⊆ R’ ⇒ R O T ⊆ R’ O T by auto

lemma rtrancl-O-shift: (S O R)* O S = S O (R O S)*
proof(intro equalityI subrelI)
 fix x y
 assume (x, y) ∈ (S O R)* O S
then obtain \(n \) where \((x, y) \in (S \circ O R)^n \circ O S\) by blast
then show \((x, y) \in S \circ O (R \circ O S)^*\)
proof (induct \(n \) arbitrary: \(y \))
case \(IH: (\text{Suc } n) \)
then obtain \(z \) where \((x, z) \in (S \circ O R)^n \circ O S\) and \((z, y) \in R \circ O S\) by auto
from \(IH \).hyps[OF \(xz \)] \(zy \) have \((x, y) \in S \circ O (R \circ O S)^* \circ O S\) by auto
then show ?case by (fold trancl-unfold-right, auto)
qed auto
next
fix \(x \, y \)
assume \((x, y) \in S \circ O (R \circ O S)^*\)
then obtain \(n \) where \((x, y) \in (S \circ O R)^n \circ O S\) by blast
then show \((x, y) \in (S \circ O (R \circ O S)^* \circ O S\) by auto
proof (induct \(n \) arbitrary: \(y \))
case \(IH: (\text{Suc } n) \)
then obtain \(z \) where \((x, z) \in (S \circ O R)^n \circ O S\) and \((z, y) \in R \circ O S\) by auto
from \(IH \).hyps[OF \(xz \)] \(zy \) have \((x, y) \in S \circ O (R \circ O S)^* \circ O S\) by auto
then show ?case by (fold trancl-unfold-right, auto)
qed auto
qed

lemma \(O-rtrancl-O-O\): \(R \circ O (S \circ O R)^* \circ O S = (R \circ O S)^+\)
by (unfold rtrancl-O-shift trancl-unfold-left, auto)

lemma \(SN-on-subset-SN-terms\):
assumes \(SN: SN-on R X \) shows \(X \subseteq \{ x. \, SN-on R \{ x \}\} \)
proof (intro subsetI, unfold mem-Collect-eq)
fix \(x \) assume \(x \in X \)
show \(SN-on R \{ x \} \) by (rule \(SN-on-subset2[OF \ - \ SN, \ insert \ x, \ auto]\))
qed auto

lemma \(SN-on-Un2\):
assumes \(SN-on R X \) and \(SN-on R Y \) shows \(SN-on R (X \cup Y)\)
using \(\text{assms} \) by fast

lemma \(SN-on-UN\):
assumes \(\forall x. \, SN-on R (X \times X) \) shows \(SN-on R (\bigcup x. \, X x)\)
using \(\text{assms} \) by fast

lemma \(Image-subsetI\): \(R \subseteq R' \Longrightarrow R \cup X \subseteq R' \cup X \) by auto

lemma \(SN-on-O-comm\):
assumes \(SN: SN-on ((R :: (\'a \times \'b) \ set) \circ (S :: (\'b \times \'a) \ set)) \) \((S \cup X) \)
shows \(SN-on (S \circ O R) X\)
proof
fix \(\text{seq :: nat} \Rightarrow \ 'b \) assume \(\text{seq0}: \, \text{seq} \ 0 \in X \) and \(\text{chain: chain (S O R) seq}\)

67
from SN have SN: SN-on (R O S) ((R O S)+ " S " X) by simp
\{ fix i a \
assume ia: (seq i,a) ∈ S and aSi: (a,seq (Suc i)) ∈ R
have seq i ∈ (S O R)+ " X
proof (induct i)
case 0 from seq0 show ?case by auto
next
case (Suc i) with chain have seq (Suc i) ∈ ((S O R)+ O S O R) " X by blast
also have ... ⊆ (S O R)+ " X by (fold trancl-unfold-right, auto)
finally show ?case.
qed
with ia have a ∈ ((S O R)+ O S) " X by auto
then have a: a ∈ ((R O S)+) " S " X by (auto simp: rtrancl-O-shift)
with ia aSi have False
proof (induct a arbitrary: i rule: SN-on-induct[OF SN])
case 1 show ?case by (fact a)
next
case IH: (2 a)
from chain obtain b
where *: (seq (Suc i), b) ∈ S (b, seq (Suc (Suc i))) ∈ R by auto
with IH have ab: (a,b) ∈ R O S by auto
with ia aSi have b ∈ ((R O S)+) " S " X: have b ∈ ((R O S)+ O R O S) " S " X by auto
then have b ∈ (R O S)+ " S " X
 by (rule rev-subsetD, intro Image-subsetI, fold trancl-unfold-right, auto)
from IH.hyps[OF ab * this] IH.prems ab show False by auto
qed
\}
with chain show False by auto
qed

lemma SN-O-comm: SN (R O S) ←→ SN (S O R)
by (intro iffI; rule SN-on-O-comm[OF SN-on-subset2], auto)

lemma chain-mono: assumes R' ⊆ R chain R' seq shows chain R seq
using assms by auto

country
fixes S R
assumes push: S O R ⊆ R O S*
begin

lemma rtrancl-O-push: S* O R ⊆ R O S*
proof
\{ fix n
 have \(s t. (s,t) ∈ S ^* n O R \Rightarrow (s,t) ∈ R O S^* \)
 proof (induct n)
 case (Suc n)
 qed
\}
then obtain u where $(s,u) \in S$ $(u,t) \in R \ O \ S^*$ unfolding relpow-Suc by blast

then have $(s,t) \in S \ O \ R \ O \ S^*$ by auto
also have $\ldots \subseteq R \ O \ S^* \ O \ S^*$ using push by blast
also have $\ldots \subseteq R \ O \ S^*$ by auto
finally show $?case.

qed auto

thus $?thesis$ by blast

qed

lemma $rtrancl-U-push$: $(S \cup R)^* = R^* \ O \ S^*$

proof (intro equalityI subrelI)
fix x y
assume $(x,y) \in (S \cup R)^*$
also have $\ldots \subseteq (S^* \ O \ R)^* \ O \ S^*$ by regexp
finally obtain z where xz $(x,z) \in (S^* \ O \ R)^*$ and zy $(z,y) \in S^*$ by auto
from xz have $(x,z) \in R^* \ O \ S^*$
proof (induct rule: $rtrancl-induct$)

case (step z w)
then have $(x,w) \in R^* \ O \ S^* \ O \ S^* \ O \ R$ by auto
also have $\ldots \subseteq R^* \ O \ S^* \ O \ R$ by regexp
also have $\ldots \subseteq R^* \ O \ R \ O \ S^*$ using $rtrancl-O-push$ by auto
also have $\ldots \subseteq R^* \ O \ S^*$ by regexp
finally show $?case.

qed auto

with zy show $(x,y) \in R^* \ O \ S^*$ by auto
qed regexp

lemma $SN-on-O-push$:
assumes SN: $SN-on \ R \ X$ shows $SN-on \ (R \ O \ S^*) \ X$

proof
fix seq
have SN: $SN-on \ R \ (R^* \ X)$ using $SN-on-Image-rtrancl[OF SN].
moreover assume $seq \ (\emptyset::nat) \in X$
then have $seq \ 0 \in R^* \ X$ by auto
ultimately show chain $(R \ O \ S^*) \ seq \Rightarrow False$

proof (induct $seq \ 0$ arbitrary; seg rule: $SN-on-induct$)

case IH
then have 01: $(seq \ 0, \ seq \ 1) \in R \ O \ S^*$
and 12: $(seq \ 1, \ seq \ 2) \in R \ O \ S^*$
and 23: $(seq \ 2, \ seq \ 3) \in R \ O \ S^*$ by (auto simp: eval-nat-numeral)
then obtain s t
where s: $(seq \ 0, \ s) \in R$ and $s1$: $(s, \ seq \ 1) \in S^*$
and t: $(seq \ 1, \ t) \in R$ and $t2$: $(t, \ seq \ 2) \in S^*$ by auto
from $s1 \ t$ have $(s,t) \in S^* \ O \ R$ by auto
with $rtrancl-O-push$ have st: $(s,t) \in R \ O \ S^*$ by auto
from $t2 \ 23$ have $(t, \ seq \ 3) \in S^* \ O \ R \ O \ S^*$ by auto
also from $rtrancl-O-push$ have $\ldots \subseteq R \ O \ S^* \ O \ S^*$ by blast
finally have t3: (t, seq 3) ∈ R O S* by regexp
let ?seq = λi. case i of 0 ⇒ s | Suc 0 ⇒ t | i ⇒ seq (Suc i)
show ?case
proof (rule IH)
from s show (seq 0, ?seq 0) ∈ R by auto
show chain (R O S*) ?seq
proof (intro allI)
 fix i show (?seq i, ?seq (Suc i)) ∈ R O S*
 proof (cases i)
 case 0 with st show ?thesis by auto
 next
 case (Suc i) with t3 IH show ?thesis by (cases i, auto simp: eval-nat-numeral)
qed
qed
qed
qed

lemma SN-on-Image-push:
 assumes SN: SN-on R X shows SN-on R (S* " X)
proof –
 { fix n
 have SN-on R ((S^n) " X)
 proof (induct n)
 case 0 from SN show ?case by auto
 case (Suc n)
 from SN-on-O-push[OF this] have SN-on (R O S*) ((S ^ n) " X).
 from SN-on-Image[OF this]
 have SN-on (R O S*) ((R O S*) " (S ^ n) " X).
 then have SN-on R ((R O S*) " (S ^ n) " X) by (rule SN-on-mono, auto)
 from SN-on-subset2[OF Image-mono[OF push subset-refl] this]
 have SN-on R (R " (S ^ Suc n) " X) by (auto simp: relcomp-Image)
 then show ?case by fast
 qed
 }
 then show ?thesis by fast
qed

end

lemma not-SN-onI[intro]: f 0 ∈ X =⇒ chain R f =⇒ ¬ SN-on R X
 by (unfold SN-on-def not-not, intro exI conjI)
lemma shift-comp[simp]: shift (f o seq) n = f o (shift seq n) by auto

lemma Id-on-union: Id-on (A ∪ B) = Id-on A ∪Id-on B unfolding Id-on-def
 by auto

lemma relpow-union-cases: (a,d) ∈ (A ∪ B) ^ n =⇒ (a,d) ∈ B ^ n ∨ (∃ b c k m.
\[(a, b) \in B \setminus k \land (b, c) \in A \land (c, d) \in (A \cup B) \setminus m \land n = \text{Suc} \ (k + m)\]

proof *(induct \(n\) arbitrary: \(a\) \(d)*)

case *(Suc \(n\) \(a\) \(e)*)

let \(?AB = A \cup B*

from \(\text{Suc}(2)\) obtain \(b\) where \(ab: (a, b) \in ?AB\) and \(be: (b, e) \in ?AB \setminus n\) by (rule relpow-Suc-E2)

from \(ab\)
show \(?case\)
proof
assume \((a, b) \in A\)
show \(?thesis\)
proof (rule disjI2, intro exI conjI)
show \(\text{Suc} \ n = \text{Suc} \ (0 + n)\) by simp
show \((a, b) \in A\) by fact
qed (insert \(be\), auto)

next
assume \(ab: (a, b) \in B\)
from \(\text{Suc}(1)[OF be]\)
show \(?thesis\)
proof
assume \((b, c) \in B \setminus n\)
with \(ab\) show \(?thesis\)
by (intro disjI1 relpow-Suc-I2)

next
assume \(\exists\ c \ d \ k \ m. (b, c) \in B \setminus k \land (c, d) \in A \land (d, e) \in ?AB \setminus m \land n = \text{Suc} \ (k + m)\)

then obtain \(c \ d \ m \ n\) where \((b, c) \in B \setminus k\) and \(\ast: (c, d) \in A\) \((d, e) \in ?AB\)

with \(ab\) have \(ac: (a, c) \in B \setminus (\text{Suc} \ k)\) by (intro relpow-Suc-I2)
show \(?thesis\)
by (intro disjI2 exI conjI, rule \(ac\), (rule \(\ast\))+, simp add: \(\ast\))
qed
qed
qed

lemma **trans-refl-imp-rtrancl-id**:

assumes **trans** \(r\) refl \(r\)

shows \(r^* = r\)

proof

show \(r^* \subseteq r\)

proof

fix \(x\) \(y\)

assume \((x, y) \in r^*\)
thus \((x, y) \in r\)
by (induct, insert assms, unfold refl-on-def trans-def, blast+)

qed

qed

lemma **trans-refl-imp-O-id**:
assumes trans r refl r
shows r O r = r
proof
 show r O r ⊆ r by (fact trans-O-subset[OF assms(1)])
 have r ⊆ r O Id by auto
 moreover have Id ⊆ r by (fact assms(2)[unfolded refl-O-iff])
 ultimately show r ⊆ r O r by auto
qed

lemma relcomp3-I:
 assumes (t, u) ∈ A and (s, t) ∈ B and (u, v) ∈ B
 shows (s, v) ∈ B O A O B
 using assms by blast

lemma relcomp3-transI:
 assumes trans B and (t, u) ∈ B O A O B and (s, t) ∈ B and (u, v) ∈ B
 shows (s, v) ∈ B O A O B
 using assms by (auto simp: trans-def intro: relcomp3-I)

lemmas converse-inward = rtrancl-converse[symmetric] converse-Un converse-UNION converse-relcomp

lemma qc-SN-relto-iff:
 assumes r O s ⊆ s O (s ∪ r)*
 shows SN (r* O s O r*) = SN s
proof
 from converse-mono [THEN iffD2 , OF assms]
 have *: s⁻¹ O r⁻¹ ⊆ (s⁻¹ ∪ r⁻¹)* O s⁻¹ unfolding converse-inward .
 have (r* O s O r*)⁻¹ = (r⁻¹)* O s⁻¹ O (r⁻¹)*
 by (simp only: converse-relcomp O-assoc rtrancl-converse)
 with qc-wf-relto-iff [OF *]
 show ?thesis by (simp add: SN-iff-wf)
qed

lemma conversion-empty [simp]: conversion {} = Id
 by (auto simp: conversion-def)

lemma symcl-idemp [simp]: (r**)* = r** by auto

end

3 Relative Rewriting

theory Relative-Rewriting
imports Abstract-Rewriting
begin

Considering a relation R relative to another relation S, i.e., R-steps may
be preceded and followed by arbitrary many S-steps.

Abbreviation (input) $\text{relto} :: \langle a \Rightarrow a \Rightarrow a \Rightarrow a \rangle$

$\text{relto } R S \equiv S^* \cup O R O S^*$

Definition $\text{SN-rel-on} :: \langle a \Rightarrow a \Rightarrow a \Rightarrow a \Rightarrow bool \rangle$

$\text{SN-rel-on } R S \equiv \text{SN-on (relto } R S)$

Definition $\text{SN-rel-on-alt} :: \langle a \Rightarrow a \Rightarrow a \Rightarrow a \Rightarrow bool \rangle$

$\text{SN-rel-on-alt } R S T = (\forall f. \text{chain } (R \cup S) f \wedge f 0 \in T \longrightarrow \neg (\text{INF } j. (f j, f (\text{Suc } j)) \in R))$

Abbreviation $\text{SN-rel} :: \langle a \Rightarrow a \Rightarrow a \Rightarrow a \Rightarrow bool \rangle$

$\text{SN-rel } R S \equiv \text{SN-rel-on } R S \cup \text{UNIV}$

Abbreviation $\text{SN-rel-alt} :: \langle a \Rightarrow a \Rightarrow a \Rightarrow a \Rightarrow bool \rangle$

$\text{SN-rel-alt } R S \equiv \text{SN-rel-on-alt } R S \cup \text{UNIV}$

Lemma $\text{relto-absorb [simp]}: \text{relto } R E O E^* = \text{relto } R E E^* O \text{ relto } R E = \text{relto } R E$

Using O-assoc and $\text{rtrancl-idemp-self-comp}$ by (metis)+

Lemma $\text{steps-preserve-SN-on-relto}$:

Assumes steps: $(a, b) \in (R \cup S)^*$

And $\text{SN: } \text{SN-on (relto } R S) \{a\}$

Shows $\text{SN-on (relto } R S) \{b\}$

Proof –

Let $?RS = \text{relto } R S$

Have $(R \cup S)^* \subseteq S^* \cup ?RS^*$ by regexp

With steps have $(a,b) \in S^* \lor (a,b) \in ?RS^*$ by auto

Thus $?thesis$

Proof

Assume $(a,b) \in ?RS^*$

From steps-preserve-SN-on[OF this SN] show $?thesis$.

Next

Assume Ssteps: $(a,b) \in S^*$

Show $?thesis$

Proof

Fix f

Assume $f 0 \in \{b\}$ and chain $?RS f$

Hence $f 0 = b$ and steps: $\forall i. (f i, f (\text{Suc } i)) \in ?RS$ by auto

Let $?g = \lambda i. \text{if } i = 0 \text{ then } a \text{ else } f i$

Have $\neg \text{SN-on } ?RS \{a\}$ unfolding SN-on-def not-not

Proof (rule ext[of $?a$], unfolding SN-on-def not-not)

Fix i

Show $(?g i, ?g (\text{Suc } i)) \in ?RS$

Proof (cases i)

Case $(\text{Suc } j)$

Show $?thesis$ using steps[of i] unfolding Suc by simp

next
case 0
 from steps[of 0, unfolded f0] Ssteps have steps: (a, f (Suc 0)) \in S^* O

\textit{RS} by blast
 have (a, f (Suc 0)) \in \textit{RS}
 by (rule subsetD[OF - steps], regexp)
 thus \textit{thesis} unfolding \theta by simp
 qed
 qed simp
 with \textit{SN} show False by simp
 qed

\textit{lemma} step-preserves-SN-on-relto: \textit{assumes} st: (s, t) \in R \cup E
 and \textit{SN}: \textit{SN-on} (relto R E) {s}
 shows \textit{SN-on} (relto R E) {t}
 by (rule steps-preserve-SN-on-relto[OF - \textit{SN}], insert st, auto)

\textit{lemma} SN-rel-on-imp-SN-rel-on-alt: SN-rel-on R S T \implies SN-rel-on-alt R S T
\textit{proof} (unfold SN-rel-on-def)
 assume \textit{SN}: SN-on (relto R S) T
 show \textit{?thesis}
 proof (unfold SN-rel-on-alt-def, intro allI impI)
 fix f
 assume steps: chain (R \cup S) f \land f 0 \in T
 with \textit{SN} have \textit{SN}: \textit{SN-on} (relto R S) {f 0}
 and steps: \(\forall i. (f i, f (Suc i)) \in R \cup S \) unfolding \textit{SN-defs} by auto
 obtain r where r: \(\forall j. r j \equiv (f j, f (Suc j)) \in R \) by auto
 show \(\neg (INFM j. (f j, f (Suc j)) \in R) \)
 proof (rule ccontr)
 assume \(\neg \textit{?thesis} \)
 hence ih: infinitely-many r unfolding infinitely-many-def r by blast
 obtain r-index where r-index = infinitely-many.index r by simp
 with infinitely-many.index-p[OF ih] infinitely-many.index-ordered[OF ih]
 infinitely-many.index-not-p-between[OF ih]
 have r-index: \(\forall i. r (r-index i) \land r-index i < r-index (Suc i) \land (\forall j. r-index j < r-index (Suc i) \implies \neg r j) \) by auto
 obtain g where g: \(\forall i. g i \equiv f (r-index i) \) ..
 { fix i
 let ?ri = r-index i
 let ?rsi = r-index (Suc i)
 from r-index have isi: ?ri < ?rsi by auto
 obtain ri rsi where ri = ?ri and rsi: rsi = ?rsi by auto
 with r-index[of i] steps have inter: \(\forall j. ri < j \land j < rsi \implies (f j, f (Suc j)) \in S \) unfolding r by auto
 from ri isi rsi have rsi: ri < rsi by simp
 { fix n
 }
assume Suc n ≤ rsi − ri
hence (f (Suc ri), f (Suc (n + ri))) ∈ S^∗
proof (induct n, simp)
case (Suc n)
 hence stepps: (f (Suc ri), f (Suc (n + ri))) ∈ S^∗ by simp
 have (f (Suc (n + ri)), f (Suc (Suc n + ri))) ∈ S
 using inter[of Suc n + ri] Suc(2) by auto
 with stepps show ?case by simp
qed

 from this[of rsi − ri − 1] rsi have
 (f (Suc ri), f rsi) ∈ S^∗ by simp
 with r-index[of i] have (f ?ri, f ?rsi) ∈ R O S^∗ unfolding r by auto
 hence (g i, g (Suc i)) ∈ S^∗ O R O S^∗ using rtrancl-refl unfolding g
by auto

hence nSN: ¬ SN-on (S^∗ O R O S^∗) {g 0} unfolding SN-defs by blast
have SN: SN-on (S^∗ O R O S^∗) {f (r-index 0)}
 unfolding rtrancl-fun-conv
 by (rule exI[of - f], rule exI[of - r-index 0], insert steps, auto)
qed

with nSN show False unfolding g ..
qed
qed

lemma SN-rel-on-alt-imp-SN-rel-on-alt-imp-SN-rel-on-alt: SN-rel-on-alt R S T ⟷ SN-rel-on R S T

proof (unfold SN-rel-on-alt)
assume SN: SN-rel-on-alt R S T
show SN-on (relto R S) T
proof
 fix f
 assume start: f 0 ∈ T and chain (relto R S) f
 hence steps: ∨ i. (f i, f (Suc i)) ∈ S^∗ O R O S^∗ by auto
 let ?prop = λ i ai bi. (f i, bi) ∈ S^∗ ∧ (bi, ai) ∈ R ∧ (ai, f (Suc (i))) ∈ S^∗
 { fix i
 from steps obtain bi ai where ?prop i ai bi by blast
 hence ∃ ai bi. ?prop i ai bi by blast
 }
 hence ∨ i. ∃ bi ai. ?prop i ai bi by blast
 from choice[of this] obtain b where ∨ i. ∃ ai. ?prop i ai (b i) by blast
 from choice[of this] obtain a where steps: ∨ i. ?prop i (a i) (b i) by blast
 from steps[of 0] have fa0: (f 0, a 0) ∈ S^∗ O R by auto
 let ?prop = λ i ai. (b i, a i) ∈ R ∧ (∀ j < length li. ((a i # li) ≠ j, (a i # li) ≠ Suc j) ∈ S) ∧ last (a i # li) = b (Suc i)

 75
{ fix i
 from steps[of i] steps[of Suc i] have (a i, f (Suc i)) ∈ S^* and (f (Suc i), b (Suc i)) ∈ S^* by auto
 from rtrancl-trans[of this] steps[of i] have R: (b i, a i) ∈ R and S: (a i, b (Suc i)) ∈ S^* by blast+
 from S[unfolded rtrancl-list-conv] obtain li where last (a i # li) = b (Suc i) ∧ (∀ j < length li. ((a i # li) j, (a i # li) j) ∈ S) ..
 with R have ?prop i li by blast
 hence ∃ li. ?prop i li ..
}

hence ∀ i. ∃ li. ?prop i li ..
from choice[of this] obtain l where steps: ∀ i. ?prop i (l i) by auto
let ?p = λ i. ?prop i (l i) from steps have steps: ∀ i. ?p i by blast
let ?l = λ i. a i # l i let ?l' = λ i. length (?l i) let ?g = λ i. inf-concat-simple ?l' i obtain g where g: ∀ i. g i = (let (ii, jj) = ?g i in ?l ii jj) by auto
have g0: g 0 = a 0 unfolding g Let-def by simp
with fa0 have fg0: (f 0, g 0) ∈ S^* O R by auto
have fg0: (f 0, g 0) ∈ (R ∪ S)^* by (rule subsetD[of - fg0], regexp)
have len: ∀ i j n. ?g n = (i,j) ⟹ j < length (?l i)
proof –
 fix i j n
 assume n: ?g n = (i,j)
 show j < length (?l i)
 proof (cases n)
 case 0
 with n have j = 0 by auto
 thus ?thesis by simp
 next
 case (Suc nn)
 obtain ii jj where nn: ?g nn = (ii,jj) by (cases ?g nn, auto)
 show ?thesis
 proof (cases Suc jj < length (?l ii))
 case True
 with nn Suc have ?g n = (ii, Suc jj) by auto
 with n True show ?thesis by simp
 next
 case False
 with nn Suc have ?g n = (Suc ii, 0) by auto
 with n show ?thesis by simp
 qed
 qed
 qed
 have gsteps: ∀ i. (g i, g (Suc i)) ∈ R ∪ S
 proof –
fix n
obtain i j where n: ?g n = (i, j) by (cases ?g n, auto)
show (g n, g (Suc n)) ∈ R ∪ S
proof (cases Suc j < length (?l i))
 case True
 with n have ?g (Suc n) = (i, Suc j) by auto
with n have gn: g n = ?l i ! j and gsn: g (Suc n) = ?l i ! (Suc j) unfolding

g by auto
 thus ?thesis using steps[of i] True by auto
next
 case False
 with n have ?g (Suc n) = (Suc i, 0) by auto
with n have gn: g n = ?l i ! j and gsn: g (Suc n) = a (Suc i) unfolding

g by auto
from gn len[OF n] False have j = length (?l i) − 1 by auto
with n have gn: g n = last (?l i) using last-conv-nth[of ?l i] by auto
from gn gsn show ?thesis using steps[of i] steps[of Suc i] by auto
qed

qed
have infR: INFM j. (g j, g (Suc j)) ∈ R unfolding INFM-nat-le
proof
fix n
obtain i j where n: ?g n = (i, j) by (cases ?g n, auto)
from len[OF n] have j: j < ?l' i .
let ?k = ?l' i − 1 − j
obtain k where k: k = j + ?k by auto
from j k have k2: k = ?l' i − 1 and k3: j + ?k < ?l' i by auto
from inf-concat-simple-add[OF n, of ?k, OF k3]
 have gnk: ?g (n + ?k) = (i, k) by (simp only: k)
hence g (n + ?k) = ?l i ! k unfolding g by auto
hence gnk2: g (n + ?k) = last (?l i) using last-conv-nth[of ?l i] k2 by auto
from k2 gnk have ?g (Suc (n + ?k)) = (Suc i, 0) by auto
hence gnsk2: g (Suc (n + ?k)) = a (Suc i) unfolding g by auto
from steps[of i] steps[of Suc i] have main: (g (n + ?k), g (Suc (n + ?k))) ∈ R
 by (simp only: gnk2 gnsk2)
show ∃ j ≥ n. (g j, g (Suc j)) ∈ R
 by (rule exI[of - n + ?k], auto simp: main[simplified])
qed
from fg0[unfolded trancl-fan-conv] obtain gg n where start: gg 0 = f 0
and n: gg n = g 0 and steps: i. i < n ⇒ (gg i, gg (Suc i)) ∈ R ∪ S by auto
let ?h = λ i. if i < n then gg i else g (i − n)
obtain h where h: h = ?h by auto
{
 fix i
 assume i: i ≤ n
 have h i = gg i using i unfolding h
 by (cases i < n, auto simp: n)
} note gg = this
from \(g \circ f \in T\) have \(h_0 \in T\) unfolding start by auto

\{
 fix \(i\)
 have \((h_i, h (\text{Suc} i)) \in R \cup S\)
 proof (cases \(i < n\))
 case True
 from steps[of \(i\)] \(g \circ f \in T\) True show \(?thesis\) by auto
 next
 case False
 hence \(i = n + (i - n)\) by auto
 then obtain \(k\) where \(i = n + k\) by auto
 from gsteps[of \(k\)] show \(?thesis\) unfolding \(h\) by simp
 qed
\}

note hsteps = this

from \(\text{SN-unfolded SN-rel-on-alt-def, rule-format, OF conjI[OF allI[OF hsteps] h0]}\)
have \(?INFM j. (h_j, h (\text{Suc} j)) \in R\).
moreover have \(?INFM j. (h_j, h (\text{Suc} j)) \in R\) unfolding \(\text{INFM-nat-le}\)
proof (rule)
 fix \(m\)
 from infR[unfolded \(\text{INFM-nat-le}\), rule-format, of \(m\)]
 obtain \(i\) where \(i \geq m\) and \(g\): \((g \circ f \in T\) by auto
 show \(?\exists n \geq m. (h_n, h (\text{Suc} n)) \in R\)
 by (rule exI[of - \(i + n\)], unfold \(h\), insert \(g \circ f\), auto)
 qed
ultimately show \(?thesis\) ..
qed
qed

lemma \(\text{SN-rel-on-conv}: \text{SN-rel-on} = \text{SN-rel-on-alt}\)
by (intro ext) (blast intro: \(\text{SN-rel-on-imp-SN-rel-on-alt SN-rel-on-alt-imp-SN-rel-on}\))

lemmas \(\text{SN-rel-defs} = \text{SN-rel-on-def} \text{SN-rel-on-alt-def}\)

lemma \(\text{SN-rel-on-alt-r-empty}: \text{SN-rel-on-alt} \{\} S T\)
unfolding \(\text{SN-rel-defs}\) by auto

lemma \(\text{SN-rel-on-alt-s-empty}: \text{SN-rel-on-alt} R \{\} = \text{SN-on} R\)
by (intro ext, unfold \(\text{SN-rel-defs SN-defs}\), auto)

lemma \(\text{SN-rel-on-mono'}:\)
assumes \(R: R \subseteq R'\) and \(S: S \subseteq R' \cup S'\) and \(\text{SN}: \text{SN-rel-on} R' S' T\)
shows \(\text{SN-rel-on} R S T\)
proof
 note conv = \(\text{SN-rel-on-conv SN-rel-on-alt-def INFM-nat-le}\)
 show \(?thesis\) unfolding \(\text{conv}\)
 proof (intro allI impI)
 fix \(f\)

78
assume chain \((R \cup S) f \land f 0 \in T\)
with \(R S\) have chain \((R' \cup S') f \land f 0 \in T\) by auto
from SN[unfolded conv, rule-format, OF this]
show \(\lnot (\forall m. \exists n \geq m. (f n, f (Suc n)) \in R)\) using \(R\) by auto
qed
qed

lemma relto-mono:
assumes \(R \subseteq R'\) and \(S \subseteq S'\)
shows \(relto R S \subseteq relto R' S'\)
using assms rtrancl-mono by blast

lemma SN-rel-on-mono:
assumes \(R: R \subseteq R'\) and \(S: S \subseteq S'\)
and \(SN: SN-rel-on R' S' T\)
shows \(SN-rel-on R S T\)
using \(SN\)
unfolding \(SN-rel-on-def\) using \(SN-on-mono[OF - relto-mono[OF R S]]\) by blast

lemmas SN-rel-on-alt-mono = SN-rel-on-mono[unfolded SN-rel-on-conv]

lemma SN-rel-on-imp-SN-on:
assumes \(SN-rel-on R S T\)
shows \(SN-on R T\)
proof
fix \(f\)
assume \(chain R f\)
and \(f0: f 0 \in T\)

hence \(\land i. (f i, f (Suc i)) \in relto R S\) by blast
thus \(False\) using assms \(f0\) unfolding \(SN-rel-on-def\) \(SN-defs\) by blast
qed

lemma relto-Id: \(relto R (S \cup Id) = relto R S\) by simp

lemma SN-rel-on-Id:
shows \(SN-rel-on R (S \cup Id) T = SN-rel-on R S T\)
unfolding \(SN-rel-on-def\) by (simp only: relto-Id)

lemma SN-rel-on-empty[simp]: \(SN-rel-on R {} T = SN-on R T\)
unfolding \(SN-rel-on-def\) by auto

lemma SN-rel-on-ideriv: \(SN-rel-on R S T = (\lnot (\exists as. ideriv R S as \land as 0 \in T)) (is ?L = ?R)\)
proof
assume \(?L\)
show \(?R\)
proof
assume \(\exists as. ideriv R S as \land as 0 \in T\)
then obtain \(as\) where \(id: ideriv R S as\) and \(T: as 0 \in T\) by auto
note \(id = id[unfolded ideriv-def]\)
\textbf{from} \(?L[unfolded\ SN-rel-on-conv\ SN-rel-on-alt-def,\ THEN\ spec[of\ -\ as]]\)
\textbf{id} \(T\) \textbf{obtain} \(i\ where\ i: \land j.\ j \geq i \implies (as\ j,\ as\ (Suc\ j)) \notin R\) \textbf{by} \textbf{auto}
\textbf{with} \textbf{id}[unfolded\ INFM-nat,\ THEN\ conjunct2,\ THEN\ spec[of\ -\ Suc\ i]] \textbf{show}
\textbf{False} \textbf{by} \textbf{auto}
\textbf{qed}
\textbf{next}
\textbf{assume} \(?R\)
\textbf{show} \(?L\)
\textbf{unfolding} \(SN-rel-on-conv\ SN-rel-on-alt-def\)
\textbf{proof}\ (\textbf{intro allI impI})
\textbf{fix} \(f\)
\textbf{presume} \textbf{steps:} \textbf{chain} \((R \cup S)\) \(f\)
\textbf{obtain} \(r\ \textbf{where}\ r: \land j.\ r j \equiv (f\ j,\ f\ (Suc\ j)) \in R\) \textbf{by} \textbf{auto}
\textbf{show} \((INFM\ j.\ (f\ j,\ f\ (Suc\ j)) \in R)\)
\textbf{proof}\ (\textbf{rule ccontr})
\textbf{assume} \textbf{¬} \(?thesis\)
\textbf{hence} \(ih:\ \text{infinitely-many}\ r\ \textbf{unfolding}\ \text{infinitely-many-def}\ r\ \textbf{by}\ \textbf{blast}\)
\textbf{obtain} \(r-index\ \textbf{where}\ \text{r-index} = \text{infinitely-many-index}\ r\ \textbf{by}\ \text{simp}\)
\textbf{with} \textbf{infinitely-many-index-p}[\text{OF}\ ih] \text{infinitely-many-index-ordered}[\text{OF}\ ih]
\textbf{infinitely-many-index-not-p-between}[\text{OF}\ ih]
\textbf{have} \textbf{r-index:} \land i,\ r\ \text{r-index\ i} \land \text{r-index\ i} < \text{r-index\ (Suc\ i)} \land (\forall\ j,\ \text{r-index\ i} < j \land j < \text{r-index\ (Suc\ i)} \implies \textbf{¬}\ r\ j)\ \textbf{by}\ \textbf{auto}\)
\textbf{obtain} \(g\ \textbf{where}\ g: \land i,\ g\ i \equiv f\ \text{r-index\ i}\ ..\)
\{\textbf{fix} \(i\)
\textbf{let} \(?ri = r-index\ i\)
\textbf{let} \(?rsi = r-index\ (Suc\ i)\)
\textbf{from} \textbf{r-index\ have} \(isi:\ ?ri < ?rsi\ \textbf{by}\ \textbf{auto}\)
\textbf{obtain} \(ri\ rsi\ \textbf{where}\ ri: r = ?ri\ \textbf{and}\ rsi: rsi = ?rsi\ \textbf{by}\ \textbf{auto}\)
\textbf{with} \textbf{r-index}[\text{OF}\ i] \textbf{steps} \textbf{have} \textbf{inter:} \land j,\ ri < j \land j < rsi \implies (f\ j,\ f\ (Suc\ j)) \in S\ \textbf{by}\ \textbf{auto}\)
\textbf{from} \(ri\ rsi\ \textbf{have} \textbf{risi:} ri < rsi\ \textbf{by}\ \textbf{simp}\)
\{
lemma SN-rel-alt-to-SN-rel : SN-rel-alt R S → SN-rel R S
proof
 (unfold SN-rel-on-def)
 assume SN : SN-rel-alt R S
 show SN (relto R S)
 proof
 fix f
 assume chain (relto R S) f
 hence steps : λ i. (f i, f (Suc i)) ∈ S^∗ O R O S^∗ by auto
 let ?prop = λ i ai bi. (f i, bi) ∈ S^∗ ∧ (bi, ai) ∈ R ∧ (ai, f (Suc i)) ∈ S^∗
 { fix i
 from steps obtain bi ai where ?prop i ai bi by blast
 hence ∃ ai bi. ?prop i ai bi by blast
 }
 hence ∀ i. ∃ ai bi. ?prop i ai bi by blast
 from choice[OF this] obtain b where ∀ i. ∃ ai. ?prop i ai (b i) by blast
 from choice[OF this] obtain a where steps: ∧ i. ?prop i (a i) (b i) by blast
 let ?prop = λ i li. (b i, a i) ∈ R ∧ (∀ j < length li. ((a i ≠ li) ⟷ j, (a i ≠ li)) ⟷ Suc j) ∈ S ∧ last (a i ≠ li) = b (Suc i)
 { fix i
 from steps[of i] steps[of Suc i] have (a i, f (Suc i)) ∈ S^∗ and (f (Suc i), b (Suc i)) ∈ S^∗ by auto
 from rtrancl-trans[OF this] steps[of i] have R: (b i, a i) ∈ R and S: (a i, b (Suc i)) ∈ S^∗ by blast+
 qed
}
from S[unfolded $rtrancl$-list-conv] obtain li where last $(a \ i \ # \ li) = b \ (\text{Suc } i) \land \forall j < \text{length } li, ((a \ i \ # \ li) \ # j, \ (a \ i \ # \ li) \ # \text{Suc } j) \in S$..
with R have $\text{prop } i \ li$ by blast
hence $\exists \ li. \ \text{prop } i \ li$..

hence $\forall i. \ \exists \ li. \ \text{prop } i \ li$..
from choice[OF this] obtain l where steps: $\land i. \ \text{prop } i \ (l \ i)$ by auto
let $?p = \lambda i. \ \text{prop } i \ (l \ i)$ from steps have steps: $\land i. \ ?p \ i$ by blast
let $?l' = \lambda i. \ \text{length } (?l \ i)$
let $?g = \lambda i. \ \text{inf-concat-simple } ?l' \ i$
obtain g where $g: \land i. \ g \ i = (\text{let } (ii, jj) = (?g \ i \in ?l \ ii) \ # jj) \ by$ auto
have len: $\land i j n. \ g \ n = (i,j) \implies j < \text{length } (?l \ i)$
proof –
fix $i \ j \ n$
assume $n: \ ?g \ n = (i,j)$
show $j < \text{length } (?l \ i)$
proof (cases n
 case 0
 with n have $j = 0$ by auto
 thus $\text{thesis by simp$
next
 case $\text{Suc } n$
 obtain $ii \ jj$ where $nn: \ ?g \ nn = (ii, jj)$ by (cases $\ ?g \ nn, \ auto$)
 show $\text{thesis}
 proof (cases $\text{Suc } jj < \text{length } (?l \ ii)$
 case True
 with nn have $\ ?g \ n = (ii, \text{Suc } jj)$ by auto
 with n True show $\text{thesis by simp$
next
 case False
 with nn have $\ ?g \ n = (\text{Suc } ii, 0)$ by auto
 with n show $\text{thesis by simp$
qed
qed

have $\text{gsteps: } \land i. \ (g \ i, \ g \ (\text{Suc } i)) \in R \cup S$
proof –
 fix n
 obtain $i \ j$ where $n: \ ?g \ n = (i, j)$ by (cases $\ ?g \ n, \ auto$)
 show $(g \ n, g \ (\text{Suc } n)) \in R \cup S$
 proof (cases $\text{Suc } j < \text{length } (?l \ i)$
 case True
 with n have $\ ?g \ (\text{Suc } n) = (i, \text{Suc } j)$ by auto
 with n have $\ ?g n = (?l \ i \ # j \ and \ gsn: \ ?g \ (\text{Suc } n) = (?l \ i \ # (\text{Suc } j) \ unfolding \ g \ by \ auto
 thus $\text{thesis using steps[of i] True by auto$
next

82
\begin{document}

\begin{enumerate}
\item \textbf{case} \textit{False} \\
\textbf{with} \textit{n} \textbf{have} \(?g \) \((\text{Suc} \ n) = (\text{Suc} \ i, 0) \) \textbf{by} auto \\
\textbf{with} \textit{n} \textbf{have} \(gn = g n = ?l i j \) \textit{and} \(gsn = g (\text{Suc} \ n) = a (\text{Suc} \ i) \) \\
\textbf{unfolding} \textit{g} \textbf{by} auto \\
\textbf{from} \(gm \) \textbf{len}[\text{OF} \ n] \textbf{False} \textbf{have} \(j = \text{length} (\forall i) - 1 \) \textbf{by} auto \\
\textbf{with} \textit{gm} \textbf{have} \(gn = g n = \text{last} (\forall i) \) \textbf{using} \textit{last-cone-nth}[\text{OF} \ i] \textbf{by} auto \\
\textbf{from} \(gm gsn \) \textbf{show} \(\textit{thesis} \) \textbf{using} \textit{steps}[\text{OF} \ i] \textbf{steps}[\text{OF} \ Suc \ i] \textbf{by} auto \\
\textbf{qed} \\
\textbf{qed} \\
\textbf{have} \textit{infR: INFM \ j.} \ (g j, g (Suc \ j)) \in \textit{R} \textbf{unfolding} \textit{INFM-nat-le} \\
\textbf{proof} \\
\textbf{fix} \textit{n} \\
\textbf{obtain} \textit{i j where} \textit{n:} \ ?g \ n = (i,j) \textbf{by} (\textit{cases} \ ?g \ n, \textit{auto}) \\
\textbf{from} \textit{len}[\text{OF} \ n] \textbf{have} \(j: j < ?l i \) \\
\textbf{let} \ ?k = ?l i - 1 - j \\
\textbf{obtain} \textit{k where} \textit{k:} \ k = j + ?k \textbf{by} auto \\
\textbf{from} \textit{j k have} \ k2; \ k = ?l i - 1 \textbf{and} \ k3; \ j + ?k < ?l i \textbf{by} auto \\
\textbf{from} \textit{inf-concat-simple-add}[\text{OF} \ n, \textit{OF} \ k, \textit{OF} \ k3] \textit{have} \textit{gk:} \ ?g \ (n + ?k) = (i, k) \textbf{by} (\textit{simp only:} \ k) \\
\textbf{hence} \ (n + ?k) = ?l i + k \textbf{unfolding} \textit{g} \textbf{by} auto \\
\textbf{hence} \ ?gk2; \ ?g \ (n + ?k) = \textit{last} (\forall i) \textbf{using} \textit{last-conv-nth}[\text{OF} \ ?l i] \textit{k2} \textbf{by} auto \\
\textbf{from} \textit{k2 gk have} \ ?g \ (\text{Suc} \ (n+?k)) = (\text{Suc} \ i, 0) \textbf{by} auto \\
\textbf{hence} \ ?gsk2; \ ?g \ (\text{Suc} \ (n+?k)) = a (\text{Suc} \ i) \textbf{unfolding} \textit{g} \textbf{by} auto \\
\textbf{from} \textit{steps}[\text{OF} \ i] \textbf{steps}[\text{OF} \ Suc \ i] \textbf{have} \textit{main:} \ (g (n+?k), g (\text{Suc} \ (n+?k))) \in \textit{R} \\
\textbf{by} (\textit{simpl only:} \ ?gk2 \ ?gsk2) \\
\textbf{show} \ \exists \ j \geq n. \ ((g j, g (Suc \ j)) \in \textit{R} \\
\textbf{by} (\textit{rule cxI[of - n + ?k], auto simp: main[simplified]}) \\
\textbf{qed} \\
\textbf{from} \textit{SN[unfolded \ SN-rel-on-alt-def]} \textit{gsteps infR} \textbf{show} \textit{False} \textbf{by} blast \\
\textbf{qed} \\
\textbf{qed} \\
\textbf{lemma} \textit{SN-rel-alt-r-empty} : \textit{SN-rel-alt {} S} \\
\textbf{unfolding} \textit{SN-rel-defs} \textbf{by} auto \\
\textbf{lemma} \textit{SN-rel-alt-s-empty} : \textit{SN-rel-alt R {} = SN R} \\
\textbf{unfolding} \textit{SN-rel-defs \ SN-defs} \textbf{by} auto \\
\textbf{lemma} \textit{SN-rel-mono\'}: \\
R \subseteq R' \Rightarrow S \subseteq R' \cup S' \Rightarrow \textit{SN-rel} R' S' \Rightarrow \textit{SN-rel} R S \\
\textbf{unfolding} \textit{SN-rel-on-conv \ SN-rel-defs \ INFM-nat-le} \\
\textbf{by} (\textit{metis contru-subsetD sup.left-idem sup.mono}) \\
\textbf{lemma} \textit{SN-rel-mono} : \\
\textbf{assumes} \textit{R:} \ R \subseteq R' \textbf{and} \textit{S:} \ S \subseteq S' \textbf{and} \textit{SN:} \ \textit{SN-rel} R' S' \\
\textbf{shows} \textit{SN-rel} R S \\
\textbf{using} \textit{SN} \textbf{unfolding} \textit{SN-rel-defs \ using} \textit{SN-subset[OF - relto-mono[OF \ R \ S]}]) \textbf{by} blast \\
\end{enumerate}

\end{document}
lemmas SN-rel-alt-mono = SN-rel-mono[unfolded SN-rel-on-conv]

lemma SN-rel-imp-SN : assumes SN-rel R S shows SN R
proof
 fix f
 assume \(\forall i. (f i, f (Suc i)) \in R \)
 hence \(\bigwedge i. (f i, f (Suc i)) \in \text{relto } R S \) by blast
 thus False using assms unfolding SN-rel-defs SN-defs by fast
qed

lemma relto-trancl-conv : (relto R S)\(^*\) = ((R \cup S))\(^*\) O R O ((R \cup S))\(^*\) by regexp

lemma SN-rel-Id: shows SN-rel R (S \cup Id) = SN-rel R S
unfolding SN-rel-defs by (simp only: relto-Id)

lemma relto-rtrancl: relto R (S\(^*\)) = relto R S by regexp

lemma SN-rel-empty[] simp: SN-rel R {} = SN R
unfolding SN-rel-defs by auto

lemma SN-rel-ideriv: SN-rel R S = (\(\neg (\exists as. \text{ideriv } R S as) \)) (is \(_L = _R \))
proof
 assume _L
 show _R unfolding SN-rel-on-conv SN-rel-defs
 proof (intro allI impI)
 fix as
 presume chain (R \cup S) as
 with _R[unfolded ideriv-def] have \(\neg (\text{INFM } i. (as i, as (Suc i)) \in R) \) by auto
 from this[unfolded INFM-nat] obtain i where i: \(\bigwedge j. i < j \implies (as j, as (Suc j)) \notin R \) by auto
 show \(\neg (\text{INFM } j. (as j, as (Suc j)) \in R) \) unfolding INFM-nat using i by blast
 qed simp
next
 assume _R
 show _L unfolding SN-rel-on-conv SN-rel-defs
 proof (intro allI implI)
 fix as
 presume chain (R \cup S) as
 with _L[unfolded ideriv-def] have \(\neg (\text{INFM } i. (as i, as (Suc i)) \in R) \) by auto
 from this[unfolded INFM-nat] obtain i where i: \(\bigwedge j. i \geq j \implies (as j, as (Suc j)) \notin R \) by auto
 show \(\neg (\text{INFM } j. (as j, as (Suc j)) \in R) \) unfolding INFM-nat using i by blast
 qed simp

84
lemma \textit{SN-rel-map}:
fixes R, R', Rw, \cdot' :: 'a rel
defines A :: $\equiv R' \cup Rw'$
assumes SN :: SN-rel R', Rw'
and R :: $\forall s \ t. \ (s, t) \in R \Longrightarrow (f s, f t) \in A \ast O R' O A \ast$
and Rw :: $\forall s \ t. \ (s, t) \in Rw \Longrightarrow (f s, f t) \in A \ast$
shows SN-rel R, Rw
unfolding SN-rel-$defs$
proof
fix g
assume steps :: chain (relto R, Rw) g
let $\equiv f i = \lambda i. \ (f s, f t)$
obtain h where $h = \equiv f$ by auto

\{ fix i
let $\equiv m = \lambda (x, y). \ (f x, f y)$
\{ fix $s \ t$
assume $(s, t) \in Rw \ast$
hence $\equiv m (s, t) \in A \ast$
proof (induct)
 case base show $\equiv m (s, t) \in A \ast$
 by simp
next
 case (step $t \ u$
 from $Rw[\OF step(2)]$ step(3)
 show $\equiv m (s, t) \in A \ast$
 by auto
\} note $Rw = this$
from steps have $(g i, g (Suc i)) \in relto R$, Rw ..
from this
obtain $s \ t$ where gs :: $(g i, s) \in Rw \ast$ and st :: $(s, t) \in R$ and tg :: $(t, g (Suc i))$
\mathrel{\in Rw \ast}$ by auto
from $Rw[\OF gs] R[\OF st] Rw[\OF tg]$
have step :: $\equiv m (Suc i) \in A \ast O (A \ast O R' O A \ast) O A \ast$
 by fast
have $\equiv m (Suc i) \in A \ast O R' O A \ast$
 by (rule subsetD[OF - step], regexp)
hence $h i, h (Suc i) \in (relto R' Rw') \ast$
 unfolding $A h$ relto-trancl-conv .
\}
hence $\sim SN ((relto R' Rw') \ast)$ by auto
with SN-imp-SN-$trancl$[OF SN[unfolded SN-rel-$on-def$]]
 show False by simp
qed

datatype SN-rel-ext-type = top-s | top-ns | normal-s | normal-ns
fun SN-rel-ext-step :: 'a rel ⇒ 'a rel ⇒ 'a rel ⇒ SN-rel-ext-type ⇒ 'a rel
where
 SN-rel-ext-step P Pw R Rw top-s = P
 SN-rel-ext-step P Pw R Rw top-ns = Pw
 SN-rel-ext-step P Pw R Rw normal-s = R
 SN-rel-ext-step P Pw R Rw normal-ns = Rw

definition SN-rel-ext :: 'a rel ⇒ 'a rel ⇒ 'a rel ⇒ 'a rel ⇒ ('a ⇒ bool) ⇒ bool
where
 SN-rel-ext P Pw R Rw M ≡ (¬ (∃ f t.
 (∀ i. (f i, f (Suc i)) ∈ SN-rel-ext-step P Pw R Rw (t i))
 ∧ (∀ i. M (f i))
 ∧ (INFM i. t i ∈ {top-s, top-ns}))
 ∧ (INFM i. t i ∈ {top-s, normal-s})))

lemma SN-rel-ext-step-mono: assumes P ⊆ P' Pw ⊆ Pw' R ⊆ R' Rw ⊆ Rw'
shows SN-rel-ext-step P Pw R Rw t ⊆ SN-rel-ext-step P' Pw' R' Rw' t
using assms
by (cases t, auto)

lemma SN-rel-ext-mono: assumes subset: P ⊆ P' Pw ⊆ Pw' R ⊆ R' Rw ⊆ Rw'
and
SN: SN-rel-ext P' Pw' R' Rw' M shows SN-rel-ext P Pw R Rw M
using SN-rel-ext-step-mono[OF subset] SN unfolding SN-rel-ext-def by blast

lemma SN-rel-ext-trans:
 fixes P Pw R Rw :: 'a rel and M :: 'a ⇒ bool
 defines M': M' ≡ {(s,t). M t}
 defines A: A ≡ (P ∪ Pw ∪ R ∪ Rw) ∩ M'
 assumes SN-rel-ext P Pw R Rw M
 shows SN-rel-ext (A' ∩ O (P ∩ M')) O A' ∩ O (A' ∩ O ((P ∪ Pw) ∩ M' ∩ O A' ∩ O (A' ∩ O (P ∪ R) ∩ M')) O A' ∩ O (A' ∩ O M (is SN-rel-ext P Pw R Rw M))
proof (rule ccontr)
let ?relt = SN-rel-ext-step P Pw R Rw
let ?rel = SN-rel-ext-step P Pw R Rw
assumes ¬ ?thesis
from this[unfolded SN-rel-ext-def]
obtain f ty
 where steps: (∀ i. (f i, f (Suc i)) ∈ ?relt (ty i))
 and min: (∀ i. M (f i))
and inf1: INFM i. ty i ∈ {top-s, top-ns}
and inf2: INFM i. ty i ∈ {top-s, normal-s}
by auto
let ?Un = λ tt. ∪ (?rel' tt)
let ?UnM = λ tt. (∪ (?rel' tt)) ∩ M'
let ?A = ?UnM {top-s, top-ns, normal-s, normal-ns}
let ?P' = ?UnM {top-s}
let ?Pw' = ?UnM {top-s, top-ns}
let $R' = \uplus M \{\text{top-s,normal-s}\}$
let $Rw' = \uplus M \{\text{top-s,top-ns,normal-s,normal-ns}\}$

have $A: A = \uplus A$ unfolding A by auto

have $P: (P \cap M') = \uplus P'$ by auto
have $Pw: (P \cup Pw) \cap M' = \uplus Pw'$ by auto
have $R: (P \cup R) \cap M' = \uplus R'$ by auto
have $Rw: A = \uplus Rw'$ unfolding A ..

{ fix s t tt
 assume $m: M s$ and $st: (s,t) \in \uplus M tt$
 hence $\exists \text{typ } \in tt. (s,t) \in \rel \text{typ } \wedge M s \wedge M t$ unfolding M' by auto
}

note one-step = this

let $\lambda s t g n ty. s = g 0 \wedge t = g n \wedge (\forall i < n. (g i, g (Suc i)) \in \rel (ty i)) \wedge (\forall i \leq n. M (g i))$

{ fix s t
 assume $m: M s$ and $st: (s,t) \in A^*$
 from $st[\text{unfolded rtrancl-fun-conv}]$
 obtain gn where $g0: g 0 = s$ and $gn: g n = t$ and steps: $\wedge i. i < n \Rightarrow (g i, g (Suc i)) \in \rel (ty i)) \wedge (\forall i \leq n. M (g i))$
}

{ fix i
 assume $i \leq n$
 have $M (g i)$
 proof (cases i)
 case 0
 show $?thesis$ unfolding 0 $g0$ by (rule m)
 next
 case (Suc j)
 with $i \leq n$ have $j < n$ by auto
 from steps[OF this] show $?thesis$ unfolding $Suc M'$ by auto
 qed
}

{ fix i
 assume $i: i < n$ hence $i': i \leq n$ by auto
 from i' one-step[OF min steps[OF i]]
 have $\exists \text{ty. } (g i, g (Suc i)) \in \rel \text{ty}$ by blast
}

hence $\forall i. (\exists \text{ty. } i < n \Rightarrow (g i, g (Suc i)) \in \rel \text{ty})$ by auto
from choice[OF this]
obtain tt where steps: $\wedge i. i < n \Rightarrow (g i, g (Suc i)) \in \rel (tt i)$ by auto
from $g0$ gn steps min
have $?seq s t g n tt$ by auto
hence $\exists g n tt. ?seq s t g n tt$ by blast

{ note $A\text{-steps} = this$
 let $?seqtt = \lambda s t tt g n ty. s = g 0 \wedge t = g n \wedge n > 0 \wedge (\forall i < n. (g i, g (Suc i)) \in \rel (ty i)) \wedge (\forall i \leq n. M (g i)) \wedge (\exists i < n. ty i \in tt) $
}
fix s t tt
assume m: M s and st: (s,t) ∈ A^* O UnM tt O A^*
then obtain u v where su: (s,u) ∈ A^* and uv: (u,v) ∈ UnM tt and vt:
(v,t) ∈ A^*
by auto
from A-steps[OF m su] obtain g1 n1 ty1 where seq1: ?seq s u g1 n1 ty1 by auto
from uv have M v unfolding M' by auto
from A-steps[OF this vt] obtain g2 n2 ty2 where seq2: ?seq v t g2 n2 ty2 by auto
from seq1 have M u by auto
from one-step[OF this uv] obtain ty where ty ∈ tt and uv: (u,v) ∈ ?rel ty by auto
let ?g = λ i. if i ≤ n1 then g1 i else g2 (i - (Suc n1))
let ?ty = λ i. if i < n1 then ty1 i else if i = n1 then ty else ty2 (i - (Suc n1))
let ?n = Suc (n1 + n2)
have ex: ∃ i < ?n. ?ty i ∈ tt
by (rule exI[of - n1], simp add: ty)
have steps: ∀ i < ?n. (?g i, ?g (Suc i)) ∈ ?rel (?ty i)
proof (intro allI impI)
fix i
assume i < ?n
show (?g i, ?g (Suc i)) ∈ ?rel (?ty i)
proof (cases i ≤ n1)
case True
with seq1 seq2 uv show ?thesis by auto
next
case False
hence i = Suc n1 + (i - Suc n1) by auto
then obtain k where i = Suc n1 + k by auto
with (i < ?n) have k < n2 by auto
thus ?thesis using seq2 unfolding i by auto
qed
qed
from steps seq1 seq2 ex
have seq: ?seqtt s t tt ?g ?n ?ty by auto
have ∃ g n ty. ?seqtt s t tt g n ty
by (intro exI, rule seq)
} note A-tt-A = this
let ?tycon = ?tycon = λ ty1 ty2 tt ty' n. ty1 = ty2 ⟹ (∃ i < n. ty' i ∈ tt)
let ?seqt = λ i ty g n ty'. f i = g 0 ∧ f (Suc i) = g n ∧ (∀ j < n. (g j, g (Suc j)) ∈ ?rel (ty' j)) ∧ (∀ j ≤ n. M (g j))
∧ (?tycon (ty i) top-s {top-s} ty' n)
∧ (?tycon (ty i) top-ns {top-s,top-ns} ty' n)
∧ (?tycon (ty i) normal-s {top-s,normal-s} ty' n)

fix i
have ∃ g n ty'. ?seqt i ty g n ty'
proof (cases ty i)

88
case top-s
 from steps[of i, unfolded top-s]
 have (f i, f (Suc i)) ∈ ?P by auto
 from A-tt-A[OF min this[unfolded P]]
 show ?thesis unfolding top-s by auto
next
 case top-ns
 from steps[of i, unfolded top-ns]
 have (f i, f (Suc i)) ∈ ?Pw by auto
 from A-tt-A[OF min this[unfolded Pw]]
 show ?thesis unfolding top-ns by auto
next
 case normal-s
 from steps[of i, unfolded normal-s]
 have (f i, f (Suc i)) ∈ ?R by auto
 from A-steps[OF min this]
 show ?thesis unfolding normal-s by auto
next
 case normal-ns
 from steps[of i, unfolded normal-ns]
 have (f i, f (Suc i)) ∈ ?Rw by auto
 from A-steps[OF min this]
 show ?thesis unfolding normal-ns by auto
qed
}
hence ∀ i. ∃ g n ty'. ?seqt i ty g n ty' by auto
from choice[OF this] obtain g where ∀ i. ∃ n ty'. ?seqt i ty (g i) n ty' by auto
from choice[OF this] obtain n where ∀ i. ∃ ty'. ?seqt i ty (g i) (n i) ty' by auto
from choice[OF this] obtain ty' where ∀ i. ?seqt i ty (g i) (n i) (ty' i) by auto
hence partial: ∀ i. ?seqt i ty (g i) (n i) (ty' i) ..

let ?ind = inf-concat n
let ?g = λ k. (λ (i,j). g i j) (?ind k)
let ?ty = λ k. (λ (i,j). ty' i j) (?ind k)

have inf: INFM i. 0 < n i
 unfolding INFM-nat-le
proof (intro allI)
 fix m
 from inf[unfolded INFM-nat-le]
 obtain k where k: k ≥ m and ty: ty k ∈ {top-s, top-ns} by auto
 show ∃ k ≥ m. 0 < n k
 proof (intro exI conjI, rule k)
 from partial[of k] ty show θ < n k by (cases n k, auto)
 qed
 qed

note bounds = inf-concat-bounds[OF inf]
note inf-Suc = inf-concat-Suc[OF inf]
note inf-mono = inf-concat-mono[OF inf]
have \(\neg SN\text{-rel-ext} \) \(P \) \(Pw \) \(R \) \(Rw \) \(M \)

unfolding \(SN\text{-rel-ext-def} \) simp-thms

proof (rule exI[of \(-?g\)], rule exI[of \(?ty\)], intro conjI allI)

fix \(k \)

obtain \(i \) \(j \) where \(ik\): \(?\text{ind } k = (i,j) \) by force

from bounds[OF this] have \(j < n \) \(i \) by auto

show \(M \ (ik) \) unfolding \(ik \) using partial[of \(i \)] \(j \) by auto

next

fix \(k \)

obtain \(i \) \(j \) where \(ik\): \(?\text{ind } k = (i,j) \) by force

from bounds[OF this] have \(j < n \) \(i \) by auto

from partial[of \(i \)] \(j \) have step: \((g \ i \ j, \ g \ i \ (Suc \ j)) \in ?rel \ (ty' \ i \ j) \) by auto

obtain \(i' \) \(j' \) where \(isk: \ ?\text{ind } (Suc \ k) = (i'\ j') \) by force

have \(i'\ j'\): \(g \ i' \ j' = g \ i \ (Suc \ j) \)

proof (rule inf-Suc[OF - \(ik \) isk])

fix \(i \)

from partial[of \(i \)]

have \(g \ i \ (n \ i) = f \ (Suc \ i) \) by simp

also have \(\ldots = g \ (Suc \ i) \ \emptyset \) using partial[of Suc \(i \)] by simp

finally show \(g \ i \ (n \ i) = g \ (Suc \ i) \ \emptyset \).

qed

show \((?g \ k, \ ?\text{rel} \ (Suc \ k)) \in ?rel \ (\ ?ty \ k) \)

unfolding \(ik \) isk split \(i'\ j' \)

by (rule step)

next

show \(\text{INFM} \ i. \ ?\text{ty} \ i \in \{\text{top-s, top-ns}\} \)

unfolding \(\text{INFM-nat-le} \)

proof (intro allI)

fix \(k \)

obtain \(i \) \(j \) where \(ik: \ ?\text{ind } k = (i,j) \) by force

from inf1[unfolded \(\text{INFM-nat} \)] obtain \(i' \) where \(i'\): \(i' > i \) and \(ty: ty' \ i' \in \{\text{top-s, top-ns}\} \) by auto

from partial[of \(i' \)] \(ty \) obtain \(j' \) where \(j': j' < n \) \(i' \) and \(ty': ty' \ i' \ j' \in \{\text{top-s, top-ns}\} \) by auto

from inf-concat-surj[of - \(n \), \(OF \ j' \)] obtain \(k' \) where \(ik'\): \(?\text{ind } k' = (i'\ j') \)

from inf-mono[OF \(ik' \) \(i' \)] have \(k: k \leq k' \) by simp

show \(\exists k' \geq k. \ ?\text{ty} \ k' \in \{\text{top-s, top-ns}\} \)

by (intro exI conjI, rule \(k \), unfold ik' split, rule \(ty' \))

qed

next

show \(\text{INFM} \ i. \ ?\text{ty} \ i \in \{\text{top-s, normal-s}\} \)

unfolding \(\text{INFM-nat-le} \)

proof (intro allI)

fix \(k \)

obtain \(i \) \(j \) where \(ik: \ ?\text{ind } k = (i,j) \) by force

from inf2[unfolded \(\text{INFM-nat} \)] obtain \(i' \) where \(i': i' > i \) and \(ty: ty' \ i' \in \{\text{top-s, normal-s}\} \) by auto

from partial[of \(i' \)] \(ty \) obtain \(j' \) where \(j': j' < n \) \(i' \) and \(ty': ty' \ i' \ j' \in \{\text{top-s, normal-s}\} \) by auto
normal-s} by auto
 from inf-concat-surj[of - n, OF j †] obtain k' where ik': ±ind k' = (i', j') ..
from inf-mono[OF ik ik' †] have k: k ≤ k' by simp
 show ∃ k' ≥ k. ?ty k' ∈ {top-s, normal-s}
 by (intro exI conjI, rule k, unfold ik' split, rule ty')
qed
qed
with assms show False by auto
qed

lemma SN-rel-ext-map: fixes P Pw R Rw P' Pw' R' Rw' :: 'a rel and M M' ::
'a ⇒ bool
 defines Ms: Ms ≡ {(s, t). M' t}
defines A: A ≡ (P' ⊔ Pw' ⊔ R' ⊔ Rw') ∩ Ms
assumes SN: SN-rel-ext P' Pw' R' Rw' M'
and P: ∃ s t. M s → M t ⊢ (s, t) ∈ P ⇒ (f s, f t) ∈ (A ° O (P' ∩ Ms) O A °)
and Pw: ∃ s t. M s → M t ⊢ (s, t) ∈ Pw ⇒ (f s, f t) ∈ (A ° O ((P' ∪ Pw') ∩ Ms) O A °)
and R: ∃ s t. I s → M s → M t ⊢ (s, t) ∈ R ⇒ (f s, f t) ∈ (A ° O ((P' ∪ R') ∩ Ms) O A °) ∩ I t
and Rw: ∃ s t. I s → M s → M t ⊢ (s, t) ∈ Rw ⇒ (f s, f t) ∈ A ° ∩ I t
tools SN-rel-ext P Pw R Rw M
proof
 note SN = SN-rel-ext-trans[OF SN]
let ?P = (A ° O (P' ∩ Ms) O A °)
let ?Pw = (A ° O ((P' ∪ Pw') ∩ Ms) O A °)
let ?R = (A ° O ((P' ∪ R') ∩ Ms) O A °)
let ?Rw = A °
let ?rel = SN-rel-ext-step P Pw R Rw
shows ?thesis
proof (rule ccontr)
 assume ¬ ?thesis
 from this[unfolded SN-rel-ext-def]
 obtain g ty
 where steps: ∃ i. (g i, g (Suc i)) ∈ ?rel (ty i)
 and min: ∃ i. M (g i)
 and inf1: INFM i. ty i ∈ {top-s, top-ns}
 and inf2: INFM i. ty i ∈ {top-s, normal-s}
 by auto
 from inf1[unfolded INFM-nat] obtain k where k: ty k ∈ {top-s, top-ns} by auto
 let ?k = Suc k
 let ?i = shift id ?k
 let ?f = λ i. f (shift g ?k i)
 let ?ty = shift ty ?k
{
fix i
assume ty: ty i ∈ \{top-s, top-ns\}
note m = min[of i]
note ms = min[of Suc i]
from P[OF m ms]
 Pw[OF m ms]
 steps[of i]
ty
have (f (g i), f (g (Suc i))) ∈ ?relt (ty i) ∧ I (g (Suc i))
 by (cases ty i, auto)
} note stepsP = this
{
 fix i
 assume I: I (g i)
 note m = min[of i]
note ms = min[of Suc i]
 from P[OF m ms]
 Pw[OF m ms]
 R[OF I m ms]
 Rw[OF I m ms]
 steps[of i]
have (f (g i), f (g (Suc i))) ∈ ?relt (ty i) ∧ I (g (Suc i))
 by (cases ty i, auto)
} note stepsI = this
{
 fix i
 have I (g (?i i))
 proof (induct i)
 case 0
 show ?case using stepsP[OF k] by simp
 next
 case (Suc i)
 from stepsI[OF Suc] show ?case by simp
 qed
} note I = this
have ¬ SN-rel-ext ?P ?Pw ?R ?Rw M'
 unfolding SN-rel-ext-def simp-thms
proof (rule exI[of - ?f], rule exI[of - ?ty], intro allI conjI)
 fix i
 show (?f i, ?f (Suc i)) ∈ ?relt (?ty i)
 using stepsI[OF I[of i]] by auto
next
 show INFM i. ?ty i ∈ \{top-s, top-ns\}
 unfolding Infm-shift[of λi. i ∈ \{top-s, top-ns\} ty ?k]
 by (rule inf1)
next
 show INFM i. ?ty i ∈ \{top-s, normal-s\}
 unfolding Infm-shift[of λi. i ∈ \{top-s, normal-s\} ty ?k]
 by (rule inf2)
92
next

fix i

have A: A ⊆ Ms unfolding A by auto
from rtrancl-mono[of this] have A*: A* ⊆ Ms* by auto
have PM: ?P ⊆ Ms* O Ms O Ms* using As by auto
have PwM: ?Pw ⊆ Ms* O Ms O Ms* using As by auto
have RM: ?R ⊆ Ms* O Ms O Ms* using As by auto
have RwM: ?Rw ⊆ Ms* using As by auto

from PM PwM RM have ?P ∪ ?Pw ∪ ?R ⊆ Ms* O Ms O Ms* (is ?PPR ⊆ -) by auto
also have ... ⊆ Ms*+ by regexp
also have ... = Ms

proof
 have Ms*+ ⊆ Ms* O Ms by regexp
 also have ... ⊆ Ms unfolding Ms by auto
 finally show Ms*+ ⊆ Ms .
qed regexp

finally have PPR: ?PPR ⊆ Ms .
show M' (?f i)
proof (induct i)
 case 0
 from stepsP[of k] k have (f (g k), f (g (Suc k))) ∈ ?PPR by (cases ty k, auto)
 with PPR show ?case unfolding Ms by simp blast
next
 case (Suc i)
 show ?thesis
 proof (cases ?ty i = normal-ns)
 case False
 hence ?ty i ∈ {top-s,top-ns,normal-s}
 by (cases ?ty i, auto)
 with stepsI[of I[of i]] have (?if i, ?f (Suc i)) ∈ ?PPR
 by auto
 from subsetD[of PPR this] have (?if i, ?f (Suc i)) ∈ Ms .
 thus ?thesis unfolding Ms by auto
next
 case True
 with stepsI[of I[of i]] have (?if i, ?f (Suc i)) ∈ ?Rw by auto
 with RwM have mem: (?if i, ?f (Suc i)) ∈ Ms* by auto
 thus ?thesis
 proof (cases)
 case Suc show ?thesis by simp
next
 case step
 thus ?thesis unfolding Ms by simp
qed
qed

qed

93
qed

with SN

show False unfolding A Ms by simp
qed

qed

lemma SN-rel-ext-map-min: fixes P Pw R Rw P' Pw' R' Rw' :: 'a rel and M M'

:: 'a ⇒ bool

defines Ms: Ms ≡ {(s,t). M' t}
defines A: A ≡ P' ∩ Ms ∪ Pw' ∩ Ms ∪ R' ∪ Rw'

assumes SN: SN-rel-ext P' Pw' R' Rw' M'

and M: \(\forall s. M s \Rightarrow M'(f t) \)

and M': \(\forall s. M' s \Rightarrow (s,t) \in R' \cup Rw' \Rightarrow M' t \)

and P: \(\forall s. M s \Rightarrow M' (f s) \Rightarrow M'(f t) \Rightarrow (s,t) \in P \Rightarrow (f s, f t) \in (A^* O (P' ∩ Ms) O A^*) \cap I \)

and Pw: \(\forall s. M s \Rightarrow M' (f s) \Rightarrow M'(f t) \Rightarrow (s,t) \in Pw \Rightarrow (f s, f t) \in (A^* O (P' ∩ Ms ∪ Pw') ∩ Ms) O A^*) \cap I \)

and R: \(\forall s. I s \Rightarrow M s \Rightarrow M' (f s) \Rightarrow M'(f t) \Rightarrow (s,t) \in R \Rightarrow (f s, f t) \in (A^* O (P' ∩ Ms ∪ R') O A^*) \cap I \)

and Rw: \(\forall s. I s \Rightarrow M s \Rightarrow M t \Rightarrow M' (f s) \Rightarrow M'(f t) \Rightarrow (s,t) \in Rw \Rightarrow (f s, f t) \in A^* \cap I \)

shows SN-rel-ext P Pw R Rw M

proof —

let ?Ms = {(s,t). M' t}
let ?A = (P' ∩ Pw' ∪ R' ∪ Rw') ∩ ?Ms

{ fix s t
 assume s: M' s and (s,t) ∈ A
 with M'(OF s, of t) have (s,t) ∈ ?A ∧ M' t unfolding Ms A by auto
 } note Aone = this

{ fix s t
 assume s: M' s and steps: (s,t) ∈ A^*
 from steps have (s,t) ∈ ?A^* ∧ M' t
 proof (induct)
 case base from s show ?case by simp
 next
 case (step t u)
 note one = Aone[OF step(3)[THEN conjunct2] step(2)]
 from step(3) one
 have steps: (s,u) ∈ ?A^* O ?A by blast
 have (s,u) ∈ ?A^*
 by (rule subsetD[OF - steps], regexp)
 with one show ?case by simp
 qed
 } note Amany = this
let ?P = (A^* O (P' ∩ Ms) O A^*)
let ?Pw = (A^* O (P' ∩ Ms ∪ Pw' ∩ Ms) O A^*)
let \(?R = (A \ast O (P' \cap Ms \cup R') \ O A \ast) \)
let \(?Rw = A \ast \)
let \(?P' = (?A \ast O (P' \cap ?Ms) \ O ?A \ast) \)
let \(?Pw' = (?A \ast O ((P' \cup Pw') \cap ?Ms) \ O ?A \ast) \)
let \(?R' = (?A \ast O ((P' \cup R') \cap ?Ms) \ O ?A \ast) \)
let \(?Rw' = ?A \ast \)

show \(?\text{thesis}\)

proof (rule SN-rel-ext-map[OF SN])

fix \(s t \)
assume \(s: M s \text{ and } t: M t \text{ and } \text{step: } (s,t) \in P \)
from \(P[OF \ s \ t \ M[OF \ s] \ M[OF \ t] \text{ step}] \)
have \((f s, f t) \in ?P \text{ and } I: I t \text{ by } \text{auto} \)
then obtain \(u v \text{ where } su: (f s, u) \in A \ast \text{ and } uv: (u,v) \in P' \cap Ms \)
and \(vt: (v,f t) \in A \ast \text{ by } \text{auto} \)
from \(\text{Amany}\[OF \ M[OF \ s] \ su]\text{ have } su: (f s, u) \in ?A \ast \text{ and } w: M' \text{ a } \text{by } \text{auto} \)
from \(uv \text{ have } v: M' \text{ v unfolding } Ms \text{ by } \text{auto} \)
from \(\text{Amany}\[OF \ v \ vt]\text{ have } vt: (v, f t) \in ?A \ast \text{ by } \text{auto} \)
from \(su \text{ uw } vt I \)
show \((f s, f t) \in ?P' \wedge I t \text{ unfolding } Ms \text{ by } \text{auto} \)

next
fix \(s t \)
assume \(s: M s \text{ and } t: M t \text{ and } \text{step: } (s,t) \in Pw \)
from \(Pw[OF s t M[OF s] M[OF t] \text{ step}] \)
have \((f s, f t) \in ?Pw \text{ and } I: I t \text{ by } \text{auto} \)
then obtain \(u v \text{ where } su: (f s, u) \in A \ast \text{ and } uv: (u,v) \in P' \cap Ms \cup Pw' \)
\cap Ms
and \(vt: (v,f t) \in A \ast \text{ by } \text{auto} \)
from \(\text{Amany}\[OF \ M[OF s] \ su]\text{ have } su: (f s, u) \in ?A \ast \text{ and } w: M' \text{ a } \text{by } \text{auto} \)
from \(uv \text{ have } w: (u,v) \in (P' \cup Pw') \cap ?Ms \text{ and } v: M' \text{ v unfolding } Ms \text{ by } \text{auto} \)
from \(su \text{ uw } vt I \)
show \((f s, f t) \in ?Pw' \wedge I t \text{ by } \text{auto} \)

next
fix \(s t \)
assume \(I: I s \text{ and } s: M s \text{ and } t: M t \text{ and } \text{step: } (s,t) \in R \)
from \(R[OF s t M[OF s] M[OF t] \text{ step}] \)
have \((f s, f t) \in ?R \text{ and } I: I t \text{ by } \text{auto} \)
then obtain \(u v \text{ where } su: (f s, u) \in A \ast \text{ and } uv: (u,v) \in P' \cap Ms \cup R' \)
and \(vt: (v,f t) \in A \ast \text{ by } \text{auto} \)
from \(\text{Amany}\[OF \ M[OF s] \ su]\text{ have } su: (f s, u) \in ?A \ast \text{ and } w: M' \text{ a } \text{by } \text{auto} \)
from \(uv \text{ have } w: (u,v) \in (P' \cup R') \cap ?Ms \text{ and } v: M' \text{ v unfolding } Ms \text{ by } \text{auto} \)
from \(\text{Amany}\[OF \ v \ vt]\text{ have } vt: (v, f t) \in ?A \ast \text{ by } \text{auto} \)
from \(su \text{ uw } vt I \)
show \((f s, f t) \in ?R' \wedge I t \text{ by } \text{auto} \)

next
fix \(s t \)
assume I: I s and s: M s and t: M t and step: (s, t) ∈ Rw
from Rw[OF I s t M[OF s] M[OF t] step]
have steps: (f s, f t) ∈ ?Rw and I: I t by auto
from Amany[OF M[OF s] steps] I
show (f s, f t) ∈ ?Rw' ∧ I t by auto
qed
qed

lemma SN-relto-imp-SN-rel: SN (relto R S) ⇒ SN-rel R S
proof –
assume SN: SN (relto R S)
show ?thesis
proof (simp only: SN-rel-on-conv SN-rel-defs, intro allI impI)
 fix f
 presume steps: chain (R ∪ S) f
 obtain r where r: j. r j ≡ (f j, f (Suc j)) ∈ R by auto
 show ¬ (INFM j. (f j, f (Suc j)) ∈ R)
 proof (rule ccontr)
 assume ¬ ?thesis
 hence ih: infinitely-many r unfolding infinitely-many-def r INFM-nat-le by blast
 obtain r-index where r-index = infinitely-many.index r by simp
 with infinitely-many.index-p[OF ih] infinitely-many.index-ordered[OF ih]
 have r-index: j. r-index i < r-index (Suc i) ∧ (∀ j. r-index i < j ∧ j < r-index (Suc i) −→ ¬ r j) by auto
 obtain g where g: j. g i ≡ f (r-index i) ..
 {
 fix i
 let ?ri = r-index i
 let ?rsi = r-index (Suc i)
 from r-index have isi: ?ri < ?rsi by auto
 obtain ri rsi where ri: ri = ?ri and rsi: rsi = ?rsi by auto
 with r-index[of i] steps have inter: j. ri < j ∧ j < rsi ⇒ (f j, f (Suc j)) ∈ S unfolding r by auto
 from ri isi rsi have risi: ri < rsi by simp
 {
 fix n
 assume Suc n ≤ rsi − ri
 hence (f (Suc ri), f (Suc (n + ri))) ∈ S^∗*
 proof (induct n, simp)
 case (Suc n)
 hence stepps: (f (Suc ri), f (Suc (n+ri))) ∈ S^∗ by simp
 have (f (Suc (n+ri)), f (Suc (Suc n + ri))) ∈ S
 using inter[of Suc n + ri] Suc(2) by auto
 with stepps show ?case by simp
 qed
 }
 }
 }
qed
from this[of rsi – ri – 1] risi have
\((f \ (\text{Suc } ri), f \ rsi) \in S^* \text{ by simp} \)
with ri rsi have ssteps: \((f \ (\text{Suc } ?ri), f \ ?rsi) \in S^* \text{ by simp} \)
with r-index[of i] have \((f \ ?ri, f \ ?rsi) \in R \ O S^* \text{ unfolding r by auto} \)
hence \((g \ i, g \ (\text{Suc } i)) \in S^* \ O R \ O S^* \) using rtrancl-refl unfolding g
by auto
hence \(- SN\ (S^* \ O R \ O S^*) \text{ unfolding SN-defs by blast} \)
with SN show False by simp
qed
qed

lemma rtrancl-list-conv:
\(((s,t) \in R^*) \Rightarrow
 (\exists \text{list. last (s \\# list) = t} \wedge (\forall i. i < \text{length list} \rightarrow ((s \\# list) ! i, (s \\# list) ! \text{Suc } i) \in R)) \) (is \(\text{?l = ?r}) \)
proof
 assume ?r
 then obtain list where last (s \\# list) = t \wedge (\forall i. i < \text{length list} \rightarrow ((s \\# list) ! i, (s \\# list) ! \text{Suc } i) \in R) \).
 thus ?l.
 proof (induct list arbitrary: s, simp)
 case (Cons u ll)
 hence last (u \\# ll) = t \wedge (\forall i. i < \text{length ll} \rightarrow ((u \\# ll) ! i, (u \\# ll) ! \text{Suc } i) \in R) \) by auto
 from Cons \(\text{1[OF this]} \) have rec: \((u,t) \in R^* \).
 from Cons have \((s, u) \in R \text{ by auto} \).
 with rec show ?case by auto
 qed
next
 assume ?l
 from rtrancl-imp-seq[of this]
 obtain S n where s: \(S \ 0 = s \) and t: \(S \ n = t \) and steps: \(\forall i < n. (S \ i, S \ (\text{Suc } i)) \in R \) by auto
 let ?list = map \((\lambda i. S \ (\text{Suc } i)) [0 <. n] \)
 show ?r
 proof (rule exI[of - ?list], intro conj1,
 cases n, simp add: s[symmetric], simp add: t[symmetric])
 show \(\forall i < \text{length } ?\text{list}. ((s \\# ?\text{list}) ! i, (s \\# ?\text{list}) ! \text{Suc } i) \in R \)
 proof (intro allI impI)
 fix i
 assume i: i < length ?list
 thus \((s \\# ?\text{list}) ! i, (s \\# ?\text{list}) ! \text{Suc } i) \in R \)
 proof (cases i, simp add: s[symmetric] steps)
 case (Suc j)
 with i steps show ?thesis by simp
 qed
qed

97
\[\text{fun choice :: (nat ⇒ 'a list) ⇒ nat ⇒ (nat × nat) where}\]
\[\text{choice} f 0 = (0,0)\]
\[| \text{choice} f \text{ (Suc } n) = \text{ (let } (i, j) = \text{ choice } f n \text{ in}
\text{if } \text{Suc } j < \text{ length } (f i)
\text{ then } (i, \text{Suc } j)
\text{ else } (\text{Suc } i, 0))\]

\textbf{lemma} \text{SN-rel-imp-SN-relto} : \text{SN-rel R S} \implies \text{SN (relto R S)}
\textbf{proof –}
\text{assume} \text{SN: SN-rel R S}
\text{show} \text{SN (relto R S)}
\textbf{proof}
\text{fix } f
\text{assume} \forall i. \text{ (f i, f (Suc } i) \in \text{ relto R S)}
\text{hence} \text{ steps: } \forall i. \text{ (f i, f (Suc } i) \in S^* \times R \times S^* \text{ by auto}}
\text{let} \text{ ?prop = } \lambda i. \text{ ai } \text{ bi. (f i, b i) } \in S^* \times (\text{ (bi, ai)} \in R \times \text{ (ai, f (Suc } i)})) \in S^*
\{ \text{fix } i \}
\text{from} \text{ steps obtain} \text{ bi ai where} \text{ ?prop i ai bi by blast}
\text{hence} \exists ai bi. \text{ ?prop i ai bi by blast}
\}
\text{hence} \forall i. \exists ai bi. \text{ ?prop i ai bi by blast}
\text{from} \text{ choice[OF this]} \text{ obtain} \text{ b where} \forall i. \exists ai. \text{ ?prop i ai (b i) by blast}
\text{from} \text{ choice[OF this]} \text{ obtain} \text{ a where} \text{ steps: } \forall i. \text{ ?prop i (a i) (b i) by blast}
\text{let} \text{ ?prop = } \lambda i. \text{ ai li. (b i, a i) } \in R \times \text{ (\forall j < length } li. ((a i \# li) \land j, (a i \# li)}}
\text{Suc } j) \in S) \land \text{last} \text{ (a i \# li) } = b \text{ (Suc } i)
\{ \text{fix } i \}
\text{from} \text{ steps[of i]} \text{ steps[of Suc i] have} \text{ (a i, f (Suc } i) \in S^* \times \text{ (S (Suc } i)}),
\text{b (Suc } i) \in S^* \text{ by auto}}
\text{from} \text{ rtrancl-trans[OF this]} \text{ steps[of i] have} \text{ R: (b i, a i) } \in R \text{ and } S: (a i, b
\text{(Suc i)) } \in S^* \text{ by blast+}}
\text{from} \text{ S[unfolded rtrancl-list-cone] obtain} \text{ li where last} \text{ (a i \# li) } = b \text{ (Suc } i)
\land \forall j < \text{ length } li. ((a i \# li) \land j, (a i \# li) \land \text{Suc } j) \in S) \ldots
\text{with} \text{ R have} \text{ ?prop i li by blast}
\text{hence} \exists li. \text{ ?prop i li ..}
\}
\text{hence} \forall i. \exists li. \text{ ?prop i li ..}
\text{from} \text{ choice[OF this]} \text{ obtain} \text{ l where} \text{ steps: } \forall i. \text{ ?prop i (l i) by auto}
\text{let} \text{ ?p = } \lambda i. \text{ ?prop i (l i)}
\text{from} \text{ steps have steps: } \forall i. \text{ ?p i by blast}
\text{let} \text{ ?l = } \lambda i. \text{ a i \# li i}
\text{let} \text{ ?g = } \lambda i. \text{ choice } (\lambda j. \text{ ?l } j) \text{ i}
\text{obtain } g \text{ where} g: \forall i. \text{ g i = } (\text{let (i j) = ?g i in } \text{ ?l i i } j) \text{ by auto}
\text{have} \text{ len: } \forall i. j. \text{ ?g n = (i, j) } \implies j < \text{ length } (?l i)
proof
fix i j n
assume n: ?g n = (i, j)
show j < length (?l i)
proof (cases n)
case 0
with n have j = 0 by auto
thus ?thesis by simp
next
case (Suc nn)
obtain ii jj where nn: ?g nn = (ii, jj) by (cases ?g nn, auto)
show ?thesis
proof (cases Suc jj < length (?l ii))
case True
with nn Suc have ?g n = (ii, Suc jj) by auto
with n True show ?thesis by simp
next
case False
with nn Suc have ?g n = (Suc ii, 0) by auto
with n show ?thesis by simp
qed

have gsteps: ∀ i. (g i, g (Suc i)) ∈ R ∪ S
proof –
fix n
obtain i j where n: ?g n = (i, j) by (cases ?g n, auto)
show (g n, g (Suc n)) ∈ R ∪ S
proof (cases Suc j < length (?l i))
case True
with n have ?g (Suc n) = (i, Suc jj) by auto
with n have gn: g n = ?l i ! j and gsn: g (Suc n) = ?l i ! (Suc jj) unfolding g by auto
thus ?thesis using steps[of i] True by auto
next
case False
with n have ?g (Suc n) = (Suc ii, 0) by auto
with n have gn: g n = ?l i ! j and gsn: g (Suc n) = a (Suc i) unfolding g by auto
from gn len[OF n] False have j = length (?l i) − 1 by auto
with gn have gn: g n = last (?l i) using last-conv-nth[of ?l i] by auto
from gn gsn show ?thesis using steps[of i] steps[of Suc i] by auto
qed

have infR: ∀ n. ∃ j ≥ n. (g j, g (Suc j)) ∈ R
proof
fix n
obtain i j where n: ?g n = (i, j) by (cases ?g n, auto)
from len[OF n] have j: j ≤ length (?l i) − 1 by simp
let \(k = \text{length } (_ i) - 1 - j \)

obtain \(k \) where \(k = j + _ k \) by auto

from \(j k \) have \(k2: k = \text{length } (_ i) - 1 \) and \(k3: j + _ k < \text{length } (_ i) \) by auto

\(
\begin{align*}
\text{fix } & n \ i \ j \ k \ l \\
\text{assume } & n: \text{choice } l \ n = (i, j) \text{ and } j + k < \text{length } (l i) \\
\text{hence } & \text{choice } l (n + k) = (i, j + k) \\
\text{by } & \text{(induct } k \text{ arbitrary: } j, \text{ simp, auto)}
\end{align*}
\)

from this\([OF n, of _ k] \)

have \(gnk: \exists g (n + _ k) = (i, k) \) by (simp only: \(k \))

hence \(g (n + _ k) = ?l i ! k \) unfolding \(g \) by auto

hence \(gnk2: g (n + _ k) = \text{last } (_ l i) \) using \(\text{last-conv-nth[of } _ l i _ k2 \) by auto

from \(k2 gnk \) have \(\exists g (\text{Suc } (n + _ k)) = (\text{Suc } i, 0) \) by auto

hence \(gnk2: g (\text{Suc } (n + _ k)) = a (\text{Suc } i) \) unfolding \(g \) by auto

from \(\text{steps[of } i \} \text{ steps[of } _ Suc i \) have \(\text{main: } (g (n + _ k), g (\text{Suc } (n + _ k))) \in R \)

by (simp only: \(gnk2 gnk2 \))

show \(\exists j \geq n. (g j, g (\text{Suc } j)) \in R \)

by (rule \(\text{exI[of - } n + _ k, \text{ auto simp: main[simplified]} \))

qed

from \(\text{SN[simplified } \text{ SN-rel-on-conv } \text{ SN-rel-defs] gsteps infR show False \)

unfolding \(\text{INFM-nat-le by fast} \)

qed

hide-const choice

lemma \(\text{SN-relto-SN-rel-conv: } \text{SN } (\text{relto } R S) = \text{SN-rel } R S \)

by (blast intro: \(\text{SN-relto-imp-SN-rel } \text{SN-rel-imp-SN-relto} \))

lemma \(\text{SN-rel-empty1: } \text{SN-rel } \{\} S \)

unfolding \(\text{SN-rel-defs by auto} \)

lemma \(\text{SN-rel-empty2: } \text{SN-rel } R \{\} = \text{SN } R \)

unfolding \(\text{SN-rel-defs SN-defs by auto} \)

lemma \(\text{SN-relto-mono:} \)

assumes \(R: R \subseteq R ‘ \) and \(S: S \subseteq S ‘ \)

and \(\text{SN: } \text{SN } (\text{relto } R ‘ S ‘) \)

shows \(\text{SN } (\text{relto } R S) \)

using \(\text{SN SN-subset[of } R ‘ \text{ relto-mono[of } R S \]} \) by blast

lemma \(\text{SN-relto-imp-SN:} \)

assumes \(\text{SN } (\text{relto } R S) \) shows \(\text{SN } R \)

proof

fix \(f \)

assume \(\forall i. (f i, f (\text{Suc } i)) \in R \)

hence \(\forall i. (f i, f (\text{Suc } i)) \in \text{relto } R S \) by blast
thus False using assms unfolding SN-defs by blast

qed

lemma SN-relo-Id:
SN (relto R (S ∪ Id)) = SN (relto R S)
by (simp only: relto-Id)

Termination inheritance by transitivity (see, e.g., Geser’s thesis).

lemma trans-subset-SN:
assumes trans R and R ⊆ (r ∪ s) and SN r and SN s
shows SN R

proof
fix f :: nat ⇒ 'a
assuming f 0 ∈ UNIV
and chain: chain R f

have star: ∃i j. i < j ⇒ (f i, f j) ∈ r ∪ s
using assms and chain-imp-trancl [OF chain] by auto

let M = {i. (∀j > i. (f i, f j) /∈ r)

show False
proof (cases finite M)
let n = Max M

assume finite M
with Max-le have ∃i∈M. i ≤ n by simp
then have ∃k≥Suc n. f k, f (Suc k) ∈ r by auto
with steps-imp-chainp [of Suc n λ x y. (x, y) ∈ r] and assms
show False by auto
next
assume infinite M
then have INFM j. j ∈ M by (simp add: Inf-many-def)
then interpret infinitely-many λi. i ∈ M by (unfold-locales) assumption

define g where simp: g = index

have ∃i. (f (g i), f (g (Suc i))) ∈ s

proof
fix i
have less: g i < g (Suc i) using index-ordered-less [of i Suc i] by simp
have g i ∈ M using index-p by simp
then have (f (g i), f (g (Suc i))) /∈ r using less by simp
moreover have (f (g i), f (g (Suc i))) ∈ r ∪ s using * [OF less] by simp
ultimately show (f (g i), f (g (Suc i))) ∈ s by blast
qed
with ⟨SN s⟩ show False by (auto simp: SN-defs)
qed

qed

lemma SN-Un-conv:
assumes trans (r ∪ s)
shows (r ∪ s) ↔ SN r ∧ SN s
(is SN ?r ↔ ?rhs)

proof
assume $SN \ (r \cup s)$ thus $SN \ r \land SN \ s$

using SN-subset[of $?r$] by blast

next

assume $SN \ r \land SN \ s$

with trans-subset-SN[OF assms subset-refl] show $SN \ {?r}$

by blast

qed

lemma SN-relto-Un:

$SN \ (relto \ (R \cup S) \ Q) \iff SN \ (relto \ R \ (S \cup Q)) \land SN \ (relto \ S \ Q)$

(is $SN \ ?a \iff SN \ ?b \land SN \ ?c$)

proof

have eq: $?a^+ = ?b^+ \cup ?c^+$ by regexp

from SN-Un-conv[of $?b^+ \cup ?c^+$, unfolded eq[symmetric]]

show $?thesis$ unfolding SN-trancl-SN-conv by simp

qed

lemma SN-relto-split:

assumes $SN \ (relto \ r \ (s \cup q2) \cup relto \ q1 \ (s \cup q2))$ (is $SN \ ?a$)

and $SN \ (relto \ s \ q2)$ (is $SN \ ?b$)

shows $SN \ (relto \ r \ (q1 \cup q2) \cup relto \ s \ (q1 \cup q2))$ (is $SN \ ?c$)

proof

have $?c^+ \subseteq ?a^+ \cup ?b^+$ by regexp

from trans-subset-SN[OF - this, unfolded SN-trancl-SN-conv, OF - assms]

show $?thesis$ by simp

qed

lemma relto-trancl-subset:

assumes $a \subseteq c$ and $b \subseteq c$

shows relto $a \ b \subseteq c^+$

proof

have relto $a \ b \subseteq (a \cup b)^+$ by regexp

also have $\ldots \subseteq c^+$

by (rule trancl-mono-set, insert assms, auto)

finally show $?thesis$.

qed

An explicit version of relto which mentions all intermediate terms

inductive relto-fun :: $\ 'a \ rel \Rightarrow 'a \ rel \Rightarrow \ nat \Rightarrow \ nat \Rightarrow \ 'a \times 'a \Rightarrow \ bool$ where

relto-fun: as $0 = a \Rightarrow as \ m = b \Rightarrow$

$(\land i. i < m \Rightarrow$

$(sel \ i \rightarrow (as \ i, \ as \ (Suc \ i)) \in A) \land \ (\neg \ sel \ i \rightarrow (as \ i, \ as \ (Suc \ i)) \in B))$

$\Rightarrow n = \ card \ \{i . \ i < m \land sel \ i\}$

$\Rightarrow (n = 0 \leftarrow\rightarrow m = 0) \Rightarrow relto-fun \ A \ B \ n \ as \ sel \ m \ (a,b)$

lemma relto-funD:

assumes relto-fun $A \ B \ n \ as \ sel \ m \ (a,b)$

shows as $0 = a \Rightarrow as \ m = b$

$(\land i. i < m \Rightarrow sel \ i \equiv (as \ i, \ as \ (Suc \ i)) \in A)$

$(\land i. i < m \Rightarrow \neg \ sel \ i \equiv (as \ i, \ as \ (Suc \ i)) \in B)$

$n = \ card \ \{i . \ i < m \land sel \ i\}$

$n = 0 \leftarrow\rightarrow m = 0$

102
using assms[unfolded relto-fun.simps] by blast+

lemma relto-fun-refl: \(\exists \) sel. relto-fun \(A \ B \ 0 \) as sel \(0 \) (\(a,a \))
by (rule exI[of - \(\lambda \cdot \cdot \cdot a \)], rule exI, rule relto-fun, auto)

lemma relto-fun-trans: assumes \((a,b) \in \text{relto} \ A \ B \)
shows \(\exists \) as sel m. relto-fun \(A \ B \) (\(\text{Suc} \ 0 \)) as sel \(m \) (\(a,b \))
proof –
 from assms obtain \(a' \ b' \) where \(aa: (a,a') \in B^-\ast \) and \(ab: (a',b') \in A \)
 and \(bb: (b',b) \in B^-\ast \) by auto
 from \(aa[\text{unfolded rtrancl-fun-conv}] \) obtain \(f1 \) \(n1 \) where
 \(f1: f1 \ 0 = a f1 \ n1 = a' \land i. i < n1 \implies (f1 \ i, f1 (\text{Suc} \ i)) \in B \) by auto
 from \(bb[\text{unfolded rtrancl-fun-conv}] \) obtain \(f2 \) \(n2 \) where
 \(f2: f2 \ 0 = b' f2 \ n2 = b \land i. i < n2 \implies (f2 \ i, f2 (\text{Suc} \ i)) \in B \) by auto
 let \(\?gen = \lambda \ aa \ aa \ bb \ i. \text{if} \ i < n1 \text{ then} aa \ i \text{ else} if \ i = n1 \text{ then} ab \ i \text{ else} bb \ i \text{ (i - Suc} \ n1) \)
 let \(\?f = \?gen \ f1 \ a' \ f2 \)
 let \(\?sel = \?gen (\lambda \cdot \cdot \cdot \text{False}) \text{ True (\lambda \cdot \cdot \cdot \text{False})} \)
 let \(\?m = \text{Suc} \ (n1 + n2) \)
 show \(\?thesis \)
 proof (rule exI[of - \?f], rule exI[of - \?sel], rule exI[of - \?m], rule relto-fun)
 fix \(i \)
 assume \(i: i < \?m \)
 show \((\?sel \ i \longrightarrow (\?f \ i, \?f (\text{Suc} \ i)) \in A) \land (\neg \?sel \ i \longrightarrow (\?f \ i, \?f (\text{Suc} \ i)) \in B) \)
 proof (cases \(i < n1 \))
 case True
 with \(f1(\text{OF} \ this) \) \(f1 \ (2) \) show \(\?thesis \) by (cases Suc \(i \) = \(n1 \), auto)
 next
 case False
 note \(nle = \text{this} \)
 show \(\?thesis \)
 proof (cases \(i > n1 \))
 case False
 with \(nle \) have \(i = n1 \) by auto
 thus \(\?thesis \) using \(f1 \ f2 \) \(ab \) by auto
 next
 case True
 define \(j \) where \(j = i \text{ -Suc} \ n1 \)
 have \(i: i = \text{Suc} \ n1 + j \) and \(j: j < n2 \) using \(\text{True unfolding} \ j\text{-def} \) by auto
 thus \(\?thesis \) using \(f2 \) by auto
 qed
 qed
 qed (insert \(f1 \ f2 \), auto)
 qed

lemma relto-fun-conv: assumes \(ab: \text{relto-fun} \ A \ B \ a1 \ b1 \) \(\text{sel1} \ m1 \) (\(a,b \))
and \(bc: \text{relto-fun} \ A \ B \ a2 \ b2 \) \(\text{sel2} \ m2 \) (\(b,c \))
shows \(\exists \) as sel. relto-fun \(A \ B \) (\(n1 + n2 \)) as sel \((m1 + m2) \) (\(a,c \))
proof —

from relto-funD[OF ab]
have 1: as1 0 = a as1 m1 = b
 \(\Lambda i. i < m1 \implies (sel1 i \mapsto (as1 i, as1 (Suc i))) \in A) \land (\neg sel1 i \mapsto (as1 i, as1 (Suc i))) \in B) \)
 \(n1 = 0 \iff m1 = 0 \) and card1: \(\text{card} \{ i. i < m1 \land sel1 i \} \) by blast+

from relto-funD[OF bc]
have 2: as2 0 = b as2 m2 = c
 \(\Lambda i. i < m2 \implies (sel2 i \mapsto (as2 i, as2 (Suc i))) \in A) \land (\neg sel2 i \mapsto (as2 i, as2 (Suc i))) \in B) \)
 \(n2 = 0 \iff m2 = 0 \) and card2: \(\text{card} \{ i. i < m2 \land sel2 i \} \) by blast+

let ?as = \(\lambda i. \text{if } i < m1 \text{ then } as1 i \text{ else } as2 (i - m1) \)
let ?sel = \(\lambda i. \text{if } i < m1 \text{ then } sel1 i \text{ else } sel2 (i - m1) \)
let ?m = m1 + m2
let ?n = n1 + n2

show ?thesis
proof (rule exI[of _ ?as], rule exI[of _ ?sel], rule relto-fun)
 have id: \{ i. i < ?m \land ?sel i \} = \{ i. i < m1 \land sel1 i \} \cup (+) m1 \{ i. i < m2 \land sel2 i \} by force
 have card (?A \cup ?f ' ?B) = card ?A + card (?f ' ?B)
 by (rule card-Un-disjoint, auto)
 also have card (?f ' ?B) = card ?B
 by (rule card-image, auto simp: inj-on-def)

finally show ?n = card \{ i. i < ?m \land ?sel i \} unfolding card1 card2 id by simp

next
fix i
assume i: \(i < ?m \)

show (?sel i \mapsto (as i, as (Suc i))) \in A) \land (\neg ?sel i \mapsto (as i, as (Suc i))) \in B)
proof (cases i < m1)
 case True
 from 1 2 have [simp]: as2 0 = as1 m1 by simp
 from True (1|3)[of i] 1(2) show ?thesis by (cases Suc i = m1, auto)

next
 case False
 define j where j = i - m1
 have i': \(i = m1 + j \) and j: \(j < m2 \) using i False unfolding j-def by auto
 thus ?thesis using False 2(3)[of j] by auto
qed

qed (insert 1 2, auto)

qed

lemma reltos-into-relto-fun: assumes \((a,b) \in (relto A B) \) \^\^ \(n \)
shows \(\exists \text{ as sel m, relto-fun A B n as sel m (a,b) } \)
using assms
proof (induct n arbitrary: b)
case \((0 \ b)\)
hence \(b = a\) by auto
show \(?case\ unfolding \ b\ using \ relto-fun-refl[\ of \ A\ B\ a]\ by\ blast\)

next
case \((\text{Suc } n \ c)\)
from relpow-Suc-E[\ OF \ Suc(2)]
obtain \(b\ where\ (a, b) \in (\text{relto } A\ B)^{\sim n}\ and\ bc\ : (b, c) \in \text{relto } A\ B\ by\ auto\)
from Suc(1)[\ OF \ ab]\ obtain as \(sel\ m\) where
IH: \(\text{relto-fun } A\ B\ n\ as\ sel\ m\ (a, b)\ by\ auto\)
from \(\text{relto-into-relto-fun}\ [\ OF \ bc]\ obtain\ as\ sel\ m\\ where\ \text{relto-fun } A\ B\ \text{(Suc } 0)\ as\ sel\ m\ (b, c)\ by\ blast\)
from \(\text{relto-fun-trans}\ [\ OF \ IH\ this]\ show \ ?case\ by\ auto\)
qed

lemma \(\text{relto-fun-into-reltos:}\ assumes\ \text{relto-fun } A\ B\ n\ as\ sel\ m\ (a,b)\)
shows \((a,b) \in (\text{relto } A\ B)^{\sim n}\)
proof
note \(* = \text{relto-funD[OF \ assms]}\)
\{
 fix \(m'\)
 let \(?c = \lambda m'.\ \text{card } \{i.\ i < m' \land sel\ i\}\)
 assume \(m' \leq m\)
hence \((?c m' > 0 \rightarrow (as\ 0, as\ m') \in (\text{relto } A\ B)^{\sim} ?c m') \land (?c m' = 0 \rightarrow (as\ 0, as\ m') \in B^*)\)
proof (induct \(m')\)
case \((\text{Suc } m')\)
let \(?x = as\ 0\)
let \(?y = as\ m'\)
let \(?z = as\ (\text{Suc } m')\)
let \(?C = ?c (\text{Suc } m')\)
have \(C: ?C = ?c m' + (\text{if } \text{sel } m' \text{ then } 1 \text{ else } 0)\)
proof
 have \(\text{id: } \{i.\ i < \text{Suc } m' \land sel\ i\} = \{i.\ i < m' \land sel\ i\} \cup (\text{if } \text{sel } m' \text{ then } \{\} \text{ else } \{\})\)
 by (cases \text{sel } m',\ auto,\ case-tac x = m',\ auto)
 show \(?thesis\ unfolding\ \text{id}\ by\ auto\)
qed
from Suc(2) have \(m' \leq m\ and\ \text{lt: } m' < m\ by\ auto\)
from Suc(1)[\ OF \ m'] have IH: \(?c m' > 0 \rightarrow (?x, ?y) \in (\text{relto } A\ B)^{\sim} ?c m'\)
\(?c m' = 0 \rightarrow (?x, ?y) \in B^*\) by auto
from *(3-4)[\ OF \ \text{lt}] have \(yz: \text{sel } m' \Rightarrow (?y, ?z) \in A \dashv \text{sel } m' \Rightarrow (?y, ?z)\)
in \(B\ by\ auto\)
show \(?case\)
proof (cases \(?c m' = 0\))
case \(\text{True note } c = \text{this}\)
from IH(2)[\ OF \ this]\ have \(xy: (?x, ?y) \in B^*\) by auto
show \(?thesis\)
proof (cases \text{sel } m')
case False
 from \(xy yz\)(2)[OF False] have \(xz\): \((?x, ?z) \in B^*\) by auto
from False c have \(C: ?C = 0\) unfolding C by simp
from \(xz\) show \(\text{thesis unfolding } C\) by auto
next
case True
from \(xy yz\)(1)[OF True] have \(xz\): \((?x, ?z) \in \text{relto } A B\) by auto
from True c have \(C: ?C = 1\) unfolding C by simp
from \(xz\) show \(\text{thesis unfolding } C\) by auto
qed
next
case False
 hence c: \(?c m' > 0\) \((?c m' = 0) = False\) by arith+
from \(IH(1)\)[OF c(1)] have \(xy: (?x, ?y) \in (\text{relto } A B)^* \cdot \cdot (?c m').\)
 show \(\text{thesis}\)
proof (cases sel m')
case False
 from \(c\) obtain \(k\) where \(ck: ?c m' = \text{Suc } k\) by (cases \(?c m'\), auto)
 from relpow_Suc_E[OF \(xy\)[unfolded this]] obtain \(u\) where \(xu: (?x, u) \in (\text{relto } A B)^* \cdot k\) and \(uy: (u, ?y) \in \text{relto } A B\) by auto
 from uy \(yz\)(2)[OF False] have \(uz: (u, ?z) \in \text{relto } A B\) by force
 with xu have \(xz\): \((?x, ?z) \in (\text{relto } A B)^* \cdot (?c m')\) unfolding \(ck\) by auto
from \(xz\) show \(\text{thesis unfolding } C\) by auto
next
case True
from \(xy yz\)(1)[OF True] have \(xz\): \((?x, ?z) \in (\text{relto } A B)^* \cdot \cdot (\text{Suc } (?c m'))\) by auto
from \(c\) True have \(C: ?C = \text{Suc } (?c m')\) unfolding \(C\) by simp
from \(xz\) show \(\text{thesis unfolding } C\) by auto
qed
qed simp

} from this[of m] * show \(\text{thesis by auto}\)
qed

lemma relto-relto-fun-conv: \((a, b) \in (\text{relto } A B)^* \cdot n) = (\exists \ as \ \text{sel } m. \text{ relto-fun } A B \ n \ as \ \text{sel } m \ (a, b))\)
using relto-fun-into-reltos[of A B n - - - a b] retlos-into-relto-fun[of a b n B A] by blast

lemma relto-fun-intermediate: assumes \(A \subseteq C\) and \(B \subseteq C\)
and \(rf: \text{relto-fun } A B \ n \ as \ \text{sel } m \ (a, b)\)
shows \(i \leq m \implies (a, as \ i) \in C^*\)
proof (induct i)
case 0
from relto-funD[of \(rf\)] show \(\text{case by simp}\)
next
case (Suc i)
hence IH: (a, as i) ∈ C’∗ and im: i < m by auto
from relto-funD(3−j) OF rf im
assms have (as i, as (Suc i)) ∈ C by auto
with IH show ?case by auto

qed

lemma not-SN-on-rel-succ:
assumes ¬ SN-on (relto R E) {s}
shows ∃ t u. (s, t) ∈ E∗ ∧ (t, u) ∈ R ∧ ¬ SN-on (relto R E) {u}
proof –
obtain v where (s, v) ∈ relto R E and v: ¬ SN-on (relto R E) {v}
using assms by fast
moreover then obtain t and u
where (s, t) ∈ E∗ and (t, u) ∈ R and uv: (u, v) ∈ E∗ by auto
moreover from uv have uv: (u, v) ∈ (R ∪ E)∗ by regexp
moreover have ¬ SN-on (relto R E) {u} using
v steps-preserve-SN-on-relto[OF uv] by auto
ultimately show ?thesis by auto

qed

lemma SN-on-relto-relcomp: SN-on (relto R S) T = SN-on (S∗ O R) T (is ?L T = ?R T)
proof
assume L: ?L T
{ fix t assume t ∈ T hence ?L {t} using L by fast }
thus ?R T by fast
next
{ fix s
have SN-on (relto R S) {s} = SN-on (S∗ O R) {s}
proof
let ?X = {s. ¬SN-on (relto R S) {s}}
{ assume ¬ ?L {s}
hence s ∈ ?X by auto
hence ¬ ?R {s}
proof(rule lower-set-imp-not-SN-on, intro ballI)
fix s assume s ∈ ?X
then obtain t u where (s, t) ∈ S∗ (t, u) ∈ R and u: u ∈ ?X
unfolding mem-Collect-eq by (metis not-SN-on-rel-succ)
hence (s, u) ∈ S∗ O R by auto
with u show ∃ u ∈ ?X. (s, u) ∈ S∗ O R by auto
qed }
thus ?R {s} ⇒ ?L {s} by auto
assume ?L {s} thus ?R {s} by(rule SN-on-mono, auto)
qed
} note main = this
assume R: ?R T
{ fix t assume t ∈ T hence ?L {t} unfolding main using R by fast }

107
thus \(?L T \) by fast

\[\text{qed} \]

\textbf{lemma trans-relto:}
\textit{assumes trans: trans } \(R \) \textit{and } \(S \cap R \subseteq R \cap S \)
\textit{shows } trans (relto \(R \) \(S \))

\textbf{proof}
\textit{fix} \(a \), \(b \), \(c \)
\textit{assume} \(ab: (a, b) \in S^* O R O S^* \) \textit{and } \(bc: (b, c) \in S^* O R O S^* \)
\textit{from} \(rtrancl-O-push \) \textit{[of } \(S R \) \(] \) \textit{have comm: } \(S^* O R \subseteq R O S^* \) \textit{by blast}
\textit{from} ab \textit{obtain } \(d e \) \textit{where } de: \((a, d) \in S^* (d, e) \in R (e, b) \in S^* \) \textit{by auto}
\textit{from} bc \textit{obtain } \(f g \) \textit{where } fg: \((b, f) \in S^* (f, g) \in R (g, c) \in S^* \) \textit{by auto}
\textit{from} de(3) \textit{fg(1)} \textit{have } \((e, f) \in S^* \) \textit{by auto}
\textit{with} fg(2) \textit{comm have } \((e, g) \in R O S^* \) \textit{by blast}
\textit{then} \textit{obtain } h \textit{where } h: \((e, h) \in R (h, g) \in S^* \) \textit{by auto}
\textit{with} de(2) \textit{trans have } dh: \((d, h) \in R \) \textit{unfolding} \textit{trans-def by blast}
\textit{from} fg(3) \textit{h(2)} \textit{have } \((h, c) \in S^* \) \textit{by auto}
\textit{with} de(1) \textit{dh(1)} \textit{show } \((a, c) \in S^* O R O S^* \) \textit{by auto}

\[\text{qed} \]

\textbf{lemma relative-ending:}
\textit{assumes chain: chain } \((R \cup S) \cap t \)
\textit{and } \(\emptyset: t \emptyset \in X \)
\textit{and } \(SN: SN-on \) \((relto \) \(R \) \(S) \) \() \(X \)
\textit{shows } \(\exists j. \forall i \geq j. (t i, t (\text{Suc } i)) \in S \cap R \)

\textbf{proof} \textit{rule ccontr}
\textit{assume } \(\neg \) \textit{thesis}
\textit{with} \textit{chain} \textit{have } \(\forall i, \exists j. j \geq i \land (t j, t (\text{Suc } j)) \in R \) \textit{by blast}
\textit{from} \textit{choice } \textit{OF this} \textit{obtain } \(f \) \textit{where } R\textit{-steps: } \(\forall i, i \leq f i \land (t (f i), t (\text{Suc } (f i))) \in R \) \textit{by ..}
\textit{let } \(?t = \lambda i. t (((\text{Suc } \circ f) \ 	ext{Suc } i) \emptyset) \)
\textit{have } \(\forall i. (t i, t (\text{Suc } (f i))) \in (\text{relto } R S)^+ \)

\textbf{proof}
\textit{fix } \(i \)
\textit{from} \textit{R\text{-steps have } leq}: \(i \leq f i \) \textit{and } \(step: (t (f i), t (\text{Suc } (f i))) \in R \) \textit{by auto}
\textit{from} \textit{chain-imp-rtrancl } \textit{[OF } \textit{chain } \textit{leq]} \textit{have } \((t i, t (f i)) \in (R \cup S)^+ \).
\textit{with} \textit{step have } \((t i, t (\text{Suc } (f i))) \in (R \cup S)^+ O R \) \textit{by auto}
\textit{then} \textit{show } \((t i, t (\text{Suc } f i)) \in (\text{relto } R S)^+ \) \textit{by regexp}

\textbf{qed}

\textit{then} \textit{have } \(\text{chain } (\text{relto } R S)^+ \) \(\neg \) \(?t \) \textit{by simp}
\textit{with } \(t \emptyset \) \textit{have } \(\neg \) \textit{SN-on } \((\text{relto } R S)^+ \) \(X \) \textit{by } \(\text{unfolding } \text{SN-on-def, auto intro: exI[of - } ?t]) \)
\textit{with} \textit{SN-on-trancl[OF } \textit{SN]} \textit{show } \textit{False } \textit{by auto}

\[\text{qed} \]

\textit{from} \textit{Geser’s thesis } \textit{[p.32, Corollary-1], generalized for } \textit{SN-on.}

\textbf{lemma } \textit{SN-on-relto-Un:}
\textit{assumes closure: relto } \(R \cup R' \) \textit{S } \(\subseteq X \)
\textit{shows } \(\text{SN-on } (\text{relto } (R \cup R') \cap S) \) \(X \leftarrow \text{SN-on } (\text{relto } R (R' \cup S)) \) \(X \cap \text{SN-on} \)

108
\[(\mathsf{relto} R' S) X\]

(is \(?c \iff ?a \land ?b\))

proof (safe)

assumes \(SN: ?a\) and \(SN': ?b\)

from \(SN\) have \(SN: \mathsf{SN-on} (\mathsf{relto} (\mathsf{relto} R S) (\mathsf{relto} R' S)) X\) by (rule \(\mathsf{SN-on-subset1}\))

regexp

shows \(?c\)

proof

fix \(f\)

assumes \(f0: f 0 \in X\) and \(chain: \mathsf{chain} (\mathsf{relto} (R \cup R') S) f\)

then have \(\mathsf{chain} (\mathsf{relto} R S \cup \mathsf{relto} R' S) f\) by auto

from \(relative-ending[OF this f0 SN]\)

have \(\exists j. \forall i \geq j. (f i, f (Suc i)) \in \mathsf{relto} R' S - \mathsf{relto} R S\) by auto

then obtain \(j\) where \(\forall i \geq j. (f i, f (Suc i)) \in \mathsf{relto} R' S\) by auto

then have \(\mathsf{chain} (\mathsf{relto} R' S) (\mathsf{shift} f j)\) by auto

moreover have \(f j \in X\)

proof (induct \(j\))

- case \(0\) from \(f0\) shows \(?case\) by simp

next

- case \((Suc j)\)

 let \(?s = (f j, f (Suc j))\)

 from \(chain\) have \(?s \in \mathsf{relto} (R \cup R') S\) by auto

 with Image-closed-trancl[\(OF closure\)] Suc show \(f (Suc j) \in X\) by blast

 qed

then have \(\mathsf{shift} f j 0 \in X\) by auto

ultimately have \(\neg \mathsf{SN-on} (\mathsf{relto} R' S) X\) by (intro \(\mathsf{not-SN-onI}\))

with \(SN'\) show \(\mathsf{False}\) by auto

qed

next

assumes \(SN: ?c\)

then show \(?b\) by (rule \(\mathsf{SN-on-subset1}\), auto)

moreover

from \(SN\) have \(\mathsf{SN-on} ((\mathsf{relto} (R \cup R') S)') X\) by (unfold \(\mathsf{SN-on-trancl-SN-on-conv}\))

then show \(?a\) by (rule \(\mathsf{SN-on-subset1}\))

regexp

qed

lemma \(\mathsf{SN-on-Un}: (R \cup R') ^+ X \subseteq X \implies \mathsf{SN-on} (R \cup R') X \iff \mathsf{SN-on} (\mathsf{relto} R R') X \land \mathsf{SN-on} R' X\)

using \(\mathsf{SN-on-relto-Un[of \{\}\]}\) by simp

end

4 Strongly Normalizing Orders

theory \(\mathsf{SN-Orders}\)

imports \(\mathsf{Abstract-Rewriting}\)

begin

We define several classes of orders which are used to build ordered semir-
ings. Note that we do not use Isabelle’s preorders since the condition
\(x > y = x \geq y \land y \not\geq x \) is sometimes not applicable. E.g., for \(\delta \)-orders
over the rationals we have \(0.2 \geq 0.1 \land 0.1 \not\geq 0.2 \), but \(0.2 >_{\delta} 0.1 \) does not
hold if \(\delta \) is larger than 0.1.

class non-strict-order = ord +
 assumes ge-refl: \(x \geq (x :: 'a) \)
 and ge-trans[trans]: \([x \geq y; (y :: 'a) \geq z] \implies x \geq z \)
 and max-comm: \(\max x y = \max y x \)
 and max-ge-x[intro]: \(\max x y \geq x \)
 and max-id: \(x \geq y \implies \max x y = x \)
 and max-mono: \(x \geq y \implies \max z x \geq \max z y \)
begin
 lemma max-ge-y[intro]: \(\max x y \geq y \)
 unfolding max-comm[of x y] ..

 lemma max-mono2: \(x \geq y \implies \max x z \geq \max y z \)
 unfolding max-comm[of - z] by (rule max-mono)
end

class ordered-ab-semigroup = non-strict-order + ab-semigroup-add + monoid-add +
 assumes plus-left-mono: \(x \geq y \implies x + z \geq y + z \)

lemma plus-right-mono: \(y \geq (z :: 'a :: ordered-ab-semigroup) \implies x + y \geq x + z \)
 by (simp add: add.commute[of x], rule plus-left-mono, auto)

class ordered-semiring-0 = ordered-ab-semigroup + semiring-0 +
 assumes times-left-mono: \(z \geq 0 \implies x \geq y \implies x \times z \geq y \times z \)
 and times-right-mono: \(x \geq 0 \implies y \geq z \implies x \times y \geq x \times z \)
 and times-left-anti-mono: \(x \geq y \implies 0 \geq z \implies y \times z \geq x \times z \)

class ordered-semiring-1 = ordered-semiring-0 + semiring-1 +
 assumes one-ge-zero: \(1 \geq 0 \)

We do not use a class to define order-pairs of a strict and a weak-order
since often we have parametric strict orders, e.g. on rational numbers there
are several orders \(> \) where \(x > y = x \geq y + \delta \) for some parameter \(\delta \).

locale order-pair =
 fixes gt :: 'a :: {non-strict-order,zero} \Rightarrow 'a \Rightarrow bool (infix \(\succ \))
 and default :: 'a
 assumes compat[trans]: \([x \geq y; y \succ z] \implies x \succ z \)
 and compat2[trans]: \([x \succ y; y \geq z] \implies x \succ z \)
 and gt-imp-ge: \(x \succ y \implies x \geq y \)
 and default-ge-zero: \(\text{default} \geq 0 \)
begin
 lemma gt-trans[trans]: \([x \succ y; y \succ z] \implies x \succ z \)
 by (rule compat[OF gt-imp-ge])
end

110
locale one-mono-ordered-semiring-1 = order-pair gt
 for gt :: 'a :: ordered-semiring-1 ⇒ 'a ⇒ bool (infix :> 50) +
 assumes plus-gt-left-mono: y :> y ⇒ x + z :> y + z
 and default-gt-zero: default :> 0
begin
lemma plus-gt-right-mono: y :> y ⇒ a + x :> a + y
 unfolding add.commute[of a] by (rule plus-gt-left-mono)

lemma plus-gt-bot-right-mono: y :> y ⇒ a + x :> a + y + b
 by (rule gt-trans[OF plus-gt-left-mono plus-gt-right-mono])
end
locale SN-one-mono-ordered-semiring-1 = one-mono-ordered-semiring-1 +
 assumes SN: SN{(x,y). y ≥ 0 ∧ x :> y} +
locale SN-strict-mono-ordered-semiring-1 = SN-one-mono-ordered-semiring-1 +
 fixes mono :: 'a :: ordered-semiring-1 ⇒ bool
 assumes mono: [mono x; y :> z; x ≥ 0] ⇒ x * y :> x * z
locale both-mono-ordered-semiring-1 = order-pair gt
 for gt :: 'a :: ordered-semiring-1 ⇒ 'a ⇒ bool (infix :> 50) +
 assumes plus-gt-bot-right-mono: y :> y ⇒ x + z :> y + z
 and times-gt-left-mono: x :> y ⇒ x * z :> y * z
 and times-gt-right-mono: y :> y ⇒ x * y :> x * z
 and zero-leastI: x :> 0
 and zero-leastII: 0 :> x ⇒ x = 0
 and zero-leastIII: (x :: 'a) ≥ 0
 and arc-pos-one: arc-pos (1 :: 'a)
 and arc-pos-default: arc-pos default
 and arc-pos-zero: ¬ arc-pos 0
 and arc-pos-plus: arc-pos x ⇒ arc-pos (x + y)
 and arc-pos-mult: [arc-pos x; arc-pos y] ⇒ arc-pos (x * y)
 and not-all-ge: ∃ c d. arc-pos d ⇒ ∃ e. e ≥ 0 ∧ arc-pos e ∧ ¬ (c ≥ d * e)
begin
lemma max0-id: max 0 (x :: 'a) = x
 unfolding max-comm[of 0]
 by (rule max-id[OF zero-leastIII])
end
locale SN-both-mono-ordered-semiring-1 = both-mono-ordered-semiring-1 +
 assumes SN: SN{(x,y). arc-pos y ∧ x :> y} +
locale weak-SN-strict-mono-ordered-semiring-1 =
 fixes weak-gt :: 'a :: ordered-semiring-1 ⇒ 'a ⇒ bool
 and default :: 'a
and mono :: 'a ⇒ bool
assumes weak-gt-mono: ∀ x y. (x,y) ∈ set xys → weak-gt x y ⇒ ∃ gt.
SN-strict-mono-ordered-semiring-1 default gt mono ∧ (∀ x y. (x,y) ∈ set xys →

locale weak-SN-both-mono-ordered-semiring-1 =
fixes weak-gt :: 'a :: ordered-semiring-1 ⇒ 'a ⇒ bool and
default :: 'a and arc-pos :: 'a ⇒ bool
assumes weak-gt-both-mono:
∀ x y. (x,y) ∈ set xys → weak-gt x y =⇒ ∃ gt.
SN-both-mono-ordered-semiring-1 default gt arc-pos ∧ (∀ x y. (x,y) ∈ set xys →

class poly-carrier = ordered-semiring-1 + comm-semiring-1
locale poly-order-carrier = SN-one-mono-ordered-semiring-1 default gt
for default :: 'a :: poly-carrier and gt (infix ≻ 50) +
fixes power-mono :: bool and
discrete :: bool
assumes times-gt-mono: [y ≻ z ; x ≥ 1] ⇒ y * x ≻ z * x
and power-mono: power-mono ⇒ x ≻ y ⇒ y ≥ 0 ⇒ n ≥ 1 ⇒ x ^ n ≻ y
^ n
and discrete: discrete ⇒ x ≥ y ⇒ ∃ k. x = (((+ (1 ^ k)) # k) * y)
class large-ordered-semiring-1 = poly-carrier +
assumes ex-large-of-nat: ∃ x. of-nat x ≥ y

context ordered-semiring-1

begin

lemma pow-mono: assumes ab: a ≥ b and b: b ≥ 0
shows a ^ n ≥ b ^ n ∧ b ^ n ≥ 0
proof (induct n)
case 0
show ?case by (auto simp: ge-refl one-ge-zero)
next
case (Suc n)
hence abn: a ^ n ≥ b ^ n and bnn: b ^ n ≥ 0 by auto
have bsn: b ^ Suc n ≥ 0 unfolding power-Suc
 using times-left-mono[OF bnn] by auto
have a ^ Suc n = a * a ^ n unfolding power-Suc by simp
also have ... ≥ b * a ^ n
 by (rule times-left-mono[OF ge-trans[OF abn bnn] ab])
also have b * a ^ n ≥ b * b ^ n
 by (rule times-right-mono[OF b abn])
finally show ?case using bsn unfolding power-Suc by simp
qed

lemma pow-ge-zero[intro]: assumes a: a ≥ (0 :: 'a)
shows a ^ n ≥ 0
proof (induct n)
 case 0
 from one-ge-zero show ?case by simp
next
 case (Suc n)
 show ?case using times-left-mono[OF Suc a] by simp
qed
end

lemma of-nat-ge-zero[intro,simp]: of-nat n ≥ (0 :: 'a :: ordered-semiring-1)
proof (induct n)
 case 0
 show ?case by (simp add: ge-refl)
next
 case (Suc n)
 from plus-right-mono[OF Suc, of 1] have of-nat (Suc n) ≥ (1 :: 'a) by simp
 also have (1 :: 'a) ≥ 0 using one-ge-zero.
 finally show ?case .
qed

lemma mult-ge-zero[intro]: (a :: 'a :: ordered-semiring-1) ≥ 0 ⇒ b ≥ 0 ⇒ a * b ≥ 0
 using times-left-mono[of b 0 a] by auto

lemma pow-mono-one: assumes a: a ≥ (1 :: 'a :: ordered-semiring-1)
 shows a ^ n ≥ 1
proof (induct n)
 case (Suc n)
 show ?case unfolding power-Suc
 using ge-trans[OF times-right-mono[OF ge-trans[OF a one-ge-zero] Suc], of 1]
 a
 by (auto simp: field-simps)
qed (auto simp: ge-refl)

lemma pow-mono-exp: assumes a: a ≥ (1 :: 'a :: ordered-semiring-1)
 shows n ≥ m ⇒ a ^ n ≥ a ^ m
proof (induct m arbitrary: n)
 case 0
 show ?case using pow-mono-one[OF a] by auto
next
 case (Suc m mn)
 then obtain n where nn: nn = Suc n by (cases nn, auto)
 note Suc = Suc[unfolded nn]
 hence rec: a ^ n ≥ a ^ m by auto
 show ?case unfolding nn power-Suc
 by (rule times-right-mono[OF ge-trans[OF a one-ge-zero] rec])
qed

lemma mult-ge-one[intro]: assumes a: (a :: 'a :: ordered-semiring-1) ≥ 1
and \(b: b \geq 1 \)
shows \(a \ast b \geq 1 \)
proof –
from \(\text{ge-trans}\{\text{OF } b \text{ one-ge-zero}\} \) have \(b0: b \geq 0 \).
from \(\text{times-left-mono}\{\text{OF } b0 \text{ a}\} \) have \(a \ast b \geq b \) by \(\text{simp} \)
from \(\text{ge-trans}\{\text{OF } this \text{ b}\} \) show \(?\text{thesis}\).
qed

lemma \(\text{sum-list-ge-mono}\): \(\text{fixes } as : \langle\forall a :: \text{ordered-semiring-0}\rangle \text{ list} \)
assumes \(\text{length as} = \text{length bs} \)
and \(\forall i. i < \text{length bs} \Rightarrow \text{as} ! i \geq \text{bs} ! i \)
shows \(\text{sum-list as} \geq \text{sum-list bs} \)
using \(\text{assms} \)
proof (induct as arbitrary: \(bs \))

\(\text{case } (\text{Nil } bs) \)
from \(\text{Nil}(1) \) show \(?\text{case}\) by \(\text{(simp add: ge-refl)} \)

next
\(\text{case } (\text{Cons } a \text{ as } bbs) \)
from \(\text{Cons}(2) \) obtain \(b \text{ bs} \) where \(bbs: bbs = b \# \text{bs} \) and \(\text{len: length as} = \text{length bs} \)
by (cases \(bbs \), \(\text{auto} \))

\(\text{note } \text{ge} = \text{Cons}(3)[\text{unfolded } bbs] \)
\{ \(\text{fix } i \)
assume \(i < \text{length bs} \)
\(\text{hence } \text{Suc } i < \text{length (b \# bs)} \) by \(\text{simp} \)
from \(\text{ge}[\text{OF this}] \) have \(\text{as} ! i \geq \text{bs} ! i \) by \(\text{simp} \)
\} \(\text{from } \text{Cons}(1)[\text{OF len this}] \) have \(\text{IH: sum-list as} \geq \text{sum-list bs} \).
from \(\text{ge}[\text{of } 0] \) have \(ab: a \geq b \) by \(\text{simp} \)
from \(\text{ge-trans}\{\text{OF plus-left-mono}\{\text{OF } ab\} \text{ plus-right-mono}\{\text{OF } \text{IH}\}\} \)
show \(?\text{case}\) unfolding \(bbs \) by \(\text{simp} \)
qed

lemma \(\text{sum-list-ge-0-nth}\): \(\text{fixes } xs : \langle\forall a :: \text{ordered-semiring-0}\rangle \text{ list} \)
assumes \(\text{ge: } \forall i. i < \text{length xs} \Rightarrow xs ! i \geq 0 \)
shows \(\text{sum-list xs} \geq 0 \)
proof –
let \(?! = \text{replicate } \langle\text{length xs}\rangle (0 :: 'a) \)
\(\text{have length xs} = \text{length } ?! \) by \(\text{simp} \)
from \(\text{sum-list-ge-mono}\{\text{OF this}\} \) \(\text{ge} \) have \(\text{sum-list xs} \geq \text{sum-list } ?! \) by \(\text{simp} \)
also have \(\text{sum-list } ?! = 0 \) using \(\text{sum-list-0}[\text{of } ?!] \) by \(\text{auto} \)
finally show \(?\text{thesis}\).
qed

lemma \(\text{sum-list-ge-0}\): \(\text{fixes } xs : \langle\forall a :: \text{ordered-semiring-0}\rangle \text{ list} \)
assumes \(\text{ge: } \forall x. x \in \text{set xs} \Rightarrow x \geq 0 \)
shows \(\text{sum-list xs} \geq 0 \)
by (rule \(\text{sum-list-ge-0-nth}\), \(\text{insert } \text{ge[unfolded set-conv-nth]} \), \(\text{auto} \))
lemma foldr-max: \(a \in \text{set as} \Rightarrow \text{foldr max as b} \geq (a :: 'a :: \text{ordered-ab-semigroup}) \)

proof (induct as arbitrary: b)
 case Nil thus ?case by simp
next
 case (Cons c as)
 show ?case
 proof (cases a = c)
 case True
 show ?thesis unfolding True by auto
 next
 case False
 with Cons have foldr max as b \(\geq a \) by auto
 from ge-trans[OF - this] show ?thesis by auto
 qed
qed

lemma of-nat-mono[intro]: assumes \(n \geq m \) shows \((\text{of-nat n} :: 'a :: \text{ordered-semiring-1}) \geq \text{of-nat m}\)

proof
 let \(?n = \text{of-nat :: nat} \Rightarrow 'a\)
 from assms show ?thesis
 proof (induct m arbitrary: n)
 case 0
 show ?case by auto
 next
 case (Suc m nn)
 then obtain n where nn: nn \(= \text{Suc n} \) by (cases nn, auto)
 note Suc = Suc[unfolded nn]
 hence rec: \(?n \geq ?n m \) by simp
 show ?thesis unfolding nn of-nat-Suc
 by (rule plus-right-mono[OF rec])
 qed
qed

non infinitesimal is the same as in the CADE07 bounded increase paper

definition non-inf :: 'a rel \Rightarrow bool
where non-inf r \(\equiv \forall a f. \exists i. (f i, f (\text{Suc} i)) \notin r \vee (f i, a) \notin r \)

lemma non-inf[intro]: assumes \(\land a f. [\land i. (f i, f (\text{Suc} i)) \in r] \Rightarrow \exists i. (f i, a) \notin r \)
 shows non-inf r
 using assms unfolding non-inf-def by blast

lemma non-infE[elim]: assumes non-inf r and \(\land i. (f i, f (\text{Suc} i)) \notin r \vee (f i, a) \notin r \Rightarrow P \)
 shows P
 using assms unfolding non-inf-def by blast

115
lemma non-inf-image:
assumes ni: non-inf r and image: \(\forall a b. (a,b) \in s \implies (f a, f b) \in r \)
shows non-inf s
proof
fix a g
assume s: \(\forall i. (g i, g (Suc i)) \in s \)
define h where h = f o g
from image[OF s] have h: \(\forall i. (h i, h (Suc i)) \in r \) unfolding h-def comp-def .
from non-infE[OF ni, of h] have \(\exists a. \exists i. (h i, a) \notin r \) using h by blast
thus \(\exists i. (g i, a) \notin s \) using image unfolding h-def comp-def by blast
qed

lemma SN-imp-non-inf: SN r \implies non-inf r
by (intro non-infI, auto)

lemma non-inf-imp-SN-bound: non-inf r \implies SN \(\{(a,b). (b,c) \in r \land (a,b) \in r\} \)
by (rule, auto)

end

5 Carriers of Strongly Normalizing Orders

theory SN-Order-Carrier
imports
SN-Orders
HOL.Rat
begin

This theory shows that standard semirings can be used in combination with polynomials, e.g. the naturals, integers, and arbitrary Archimedean fields by using delta-orders.

It also contains the arctic integers and arctic delta-orders where 0 is -infty, 1 is zero, + is max and * is plus.

5.1 The standard semiring over the naturals

instantiation nat :: large-ordered-semiring-1
begin
instance by (intro-classes, auto)
end

definition nat-mono :: nat \Rightarrow bool where nat-mono x \equiv x \neq 0

interpretation nat-SN: SN-strict-mono-ordered-semiring-1 1 (>) :: nat \Rightarrow nat
\Rightarrow bool nat-mono
by (unfold-locales, insert SN-nat-gt, auto simp: nat-mono-def)

interpretation nat-poly: poly-order-carrier 1 (>) :: nat \Rightarrow nat \Rightarrow bool True
discrete
proof (unfold-locales)
fix x y :: nat
assume ge: x ≥ y
obtain k where k: x − y = k by auto
show ∃ k. x = ((+) 1 "" k) y
proof (rule exI[of - k])
from ge k have x = k + y by simp
also have ... = ((+) 1 "" k) y
by (induct k, auto)
finally show x = ((+) 1 "" k) y.
qed
qed (auto simp: field-simps power-strict-mono)

5.2 The standard semiring over the Archimedean fields using
delta-orderings
definition delta-gt :: 'a :: floor-ceiling ⇒ 'a ⇒ bool where
delta-gt δ ≡ (λ x y. x − y ≥ δ)

lemma non-inf-delta-gt: assumes delta: δ > 0
sows non-inf {(a,b) . delta-gt δ a b} (is non-inf ?r)
proof
let ?gt = delta-gt δ
fix a :: 'a and f
assume ⋀ i. (f i, f (Suc i)) ∈ ?r
hence gt: ⋀ i. ?gt (f i) (f (Suc i)) by simp
{
 fix i
 have f i ≤ f 0 − δ * of-nat i
 proof (induct i)
 case (Suc i)
 thus ?case using gt[of i, unfolded delta-gt-def] by (auto simp: field-simps)
 qed
}

note fi = this
{
 fix r :: 'a
 have of-nat (nat (ceiling r)) ≥ r
 by (metis ceiling-le-zero le-of-int-ceiling less-le-not-le nat-0-iff not-less of-nat-0
 of-nat-nat)
}

note ceil-elim = this
define i where i = nat (ceiling ((f 0 − a) / δ))
from fi[of i] have f i − f 0 ≤ − δ * of-nat (nat (ceiling ((f 0 − a) / δ)))
unfolding i-def by simp
also have ... ≤ − δ * ((f 0 − a) / δ) using ceil-elim[of (f 0 − a) / δ] delta
 by (metis le-imp-neg-le minus-mult-commute mult-le-cancel-left-pos)
also have ... = − f 0 + a using delta by auto
also have ... < − f 0 + a + δ using delta by auto
finally have ¬ ?gt (f i) a unfolding delta-gt-def by arith
thus ∃ i. (f i, a) /∈ ?r by blast
lemma delta-gt-SN: assumes dpos: δ > 0 shows SN \{(x,y). 0 ≤ y ∧ delta-gt δ x y\}
proof
 from non-inf-imp-SN-bound[OF non-inf-delta-gt[OF dpos], of − δ]
 show ?thesis unfolding delta-gt-def by auto
qed

definition delta-mono :: 'a :: floor-ceiling ⇒ bool where
delta-mono x ≡ x ≥ 1
subclass (in floor-ceiling) large-ordered-semiring-1
proof
 fix x :: 'a
 from ex-le-of-int[of x] obtain z where x: x ≤ of-int z by auto
 have z ≤ int (nat z) by auto
 with x have x ≤ of-int (int (nat z))
 by (metis (full-types) le-cases of-int-0-le-iff of-int-of-nat-eq of-nat-0-le-iff of-nat-nat
 order-trans)
 also have ... = of-nat (nat z) unfolding of-int-of-nat-eq..
 finally
 show ∃ y. x ≤ of-nat y by blast
qed (auto simp: mult-right-mono mult-left-mono mult-right-mono-neg max-def)

lemma delta-interpretation: assumes dpos: δ > 0 and default: δ ≤ def
 shows SN-strict-mono-ordered-semiring-1 def (delta-gt δ) delta-mono
proof
 from dpos default have defz: 0 ≤ def by auto
 show ?thesis
 proof (unfold-locales)
 show SN \{(x,y). y ≥ 0 ∧ delta-gt δ x y\} by (rule delta-gt-SN[OF dpos])
 next
 fix x y z :: 'a
 assume delta-mono x and yz: delta-gt δ y z
 hence x: 1 ≤ x unfolding delta-mono-def by simp
 have ∃ d > 0, delta-gt δ = (λ x y. d ≤ x − y)
 by (rule exI[of - δ], auto simp: dpos delta-gt-def)
 from this obtain d where d: 0 < d and rat: delta-gt δ = (λ x y. d ≤ x − y)
 by auto
 from yz have yzd: d ≤ y − z by (simp add: rat)
 show delta-gt δ (x * y) (x * z)
 proof (simp only: rat)
 let ?p = (x − 1) * (y − z)
 from x have x1: 0 ≤ x − 1 by auto
 from yzd d have yzd0: 0 ≤ y − z by auto
 have 0 ≤ ?p
 by (rule mult-nonneg-nonneg[OF x1 yzd0])
 have x * y − x * z = x * (y − z) using right-diff-distrib[of x y z] by auto
 qed
also have \(\ldots = (x - 1 + 1) \times (y - z) \) by auto
also have \(\ldots = ?p + 1 \times (y - z) \) by (rule ring-distrib(2))
also have \(\ldots = ?p + (y - z) \) by simp
also have \(\ldots \geq (\theta + d) \) using gcd (\(\theta \leq ?p \)) by auto
finally
show \(d \leq x \times y - x \times z \) by auto
qed

qed (insert dpos, auto simp: delta-gt-def default defz)

lemma delta-poly: assumes dpos: \(\delta > 0 \) and default: \(\delta \leq \text{def} \)
sows poly-order-carrier def (delta-gt \(\delta \))(1 \(\leq \delta \)) False
proof –
from delta-interpretation[OF dpos default]
interpret SN-strict-mono-ordered-semiring-1 def delta-gt \(\delta \) delta-mono .
interpret poly-order-carrier def delta-gt \(\delta \) False False
proof (unfold-locales)
 fix \(y \) \(z \) \(x \)::'a
 assume gt: delta-gt \(\delta \) \(y \times z \) and ge: \(x \geq 1 \)
 from ge have ge: \(x \geq 0 \) and m: delta-mono \(x \) unfolding delta-mono-def by auto
 show delta-gt \(\delta \) \((y \times x)\) \((z \times x)\)
 using mono[OF m gt ge] by (auto simp: field-simps)
next
 fix \(x \) \(y \)::'a
 assume False
 thus \(\exists k \) \(x = ((+) 1 \sim k) y \) by simp
qed

show \(?thesis
proof (unfold-locales)
 fix \(x \) \(y \)::'a and \(n :: \text{nat} \)
 assume one: \(1 \leq \delta \) and gt: delta-gt \(\delta \) \(x \times y \) and \(y \geq 0 \) and \(n :: 1 \leq n \)
 then obtain \(p \) where \(n = \text{Suc} \ p \) and \(x \geq 1 \) and \(y2 :: 0 \leq y \) and \(xy :: x \)
 \(\geq y \) by (cases \(n \), auto simp: delta-gt-def)
 show delta-gt \(\delta \) \((x \sim n)\) \((y \sim n)\)
 proof (simp only: \(n \), induct \(p \), simp add: gt)
 case (Suc \(p \))
 from times-gt-mono[OF this \(x \)]
 have one: delta-gt \(\delta \) \((x \sim \text{Suc} \ (\text{Suc} \ p))\) \((x \times y \sim \text{Suc} \ p)\) by (auto simp: field-simps)
 also have \(\ldots \geq y \times y \sim \text{Suc} \ p \)
 by (rule times-left-mono[OF - xy], auto simp: zero-le-power[OF y2, of Suc p, simplified])
 finally show \(?case by auto
qed

next

119
fix x y :: 'a
assume False
thus ∃ k. x = ((+ 1 ^^ k)) y by simp
qed (rule times-gt-mono, auto)
qed

lemma delta-minimal-delta: assumes (∃ x y. (x,y) ∈ set xys =⇒ x > y) shows (∃ δ > 0. ∀ x y. (x,y) ∈ set xys =⇒ delta-gt δ x y)
using assms
proof (induct xys)
case Nil
show ?case by (rule exI[of - 1], auto)
next
case (Cons xy xys)
show ?case
proof (cases xy)
case (Pair x y)
with Cons have x > y by auto
then obtain d1 where d1 = x - y and d1pos: d1 > 0 and d1 ≤ x - y by auto
hence xy: delta-gt d1 x y unfolding delta-gt-def by auto
from Cons obtain d2 where d2pos: d2 > 0 and xys: ∀ x y. (x, y) ∈ set xys =⇒ delta-gt d2 x y by auto
obtain d where d = min d1 d2 by auto
with d1pos d2pos xy have dpos: d > 0 and delta-gt d x y unfolding delta-gt-def by auto
with xys d Pair have ∀ x y. (x,y) ∈ set (xy # xys) =⇒ delta-gt d x y unfolding delta-gt-def by force
with dpos show ?thesis by auto
qed
qed

interpretation weak-delta-SN: weak-SN-strict-mono-ordered-semiring-1 (> 1 delta-mono)
proof
fix xysp :: ('a × 'a) list
assume orient: ∀ x y. (x,y) ∈ set xysp =⇒ x > y
obtain xys where xys = (1,0) ≠ xysp by auto
with orient have (∃ x y. (x,y) ∈ set xys =⇒ x > y) by auto
with delta-minimal-delta have (∃ δ > 0. ∀ x y. (x, y) ∈ set xys =⇒ delta-gt δ x y)
by auto
then obtain δ where dpos: δ > 0 and orient: (∃ x y. (x,y) ∈ set xys =⇒ delta-gt δ x y by auto
from orient have orient1: ∀ x y. (x,y) ∈ set xysp =⇒ delta-gt δ x y and orient2: delta-gt δ 1 0 unfolding xys by auto
from orient2 have oned: δ ≤ 1 unfolding delta-gt-def by auto
show (∃ gt. SN-strict-mono-ordered-semiring-1 1 gt delta-mono ∧ (∀ x y. (x, y) ∈ set xysp =⇒ gt x y)
by (intro exI conjI, rule delta-interpretation[OF dpos oned], rule orient1)
5.3 The standard semiring over the integers

Definition \(\text{int-mono} :: \text{int} \Rightarrow \text{bool} \) where \(\text{int-mono} \ x \equiv x \geq 1 \)

Instantiation \(\text{int} :: \text{large-ordered-semiring-1} \)

Proof
- Fix \(y :: \text{int} \)
- Show \(\exists \ x. \text{of-nat} \ x \geq y \)
 - By (rule exI[of - nat y], simp)
- QED (auto simp: mult-right-mono mult-left-mono mult-right-mono-neg)

Lemma \(\text{non-inf-int-gt} : \text{non-inf} \{(a,b :: \text{int}) . \ a > b\} \) by (rule non-inf-image[OF non-inf-delta-gt, of 1 - rat-of-int], auto simp: delta-gt-def)

Interpretation \(\text{int-SN} : \text{SN-strict-mono-ordered-semiring-1} 1 (>) :: \text{int} \Rightarrow \text{int} \Rightarrow \text{bool} \text{ int-mono} \)
- Have [simp]: \(\forall x :: \text{int}. \ (-1 < x) = (0 \leq x) \) by auto
- Show \(\text{SN} \{(x,y). \ y \geq 0 \land (y :: \text{int}) < x\} \)
 - Using non-inf-imp-SN-bound[OF non-inf-int-gt, of -1] by auto
- QED (auto simp: mult-strict-left-mono int-mono-def)

Interpretation \(\text{int-poly} : \text{poly-order-carrier} 1 (>) :: \text{int} \Rightarrow \text{int} \Rightarrow \text{bool} \text{ True discrete} \)
- Fix \(x y :: \text{int} \)
- Assume \(gc : x \geq y \)
- Then obtain \(k \) where \(k : x - y = k \text{ and } kp : \theta \leq k \) by auto
- Then obtain \(nk \) where \(nk : nk = \text{nat} k \text{ and } k : x - y = \text{int} nk \) by auto
- Show \(\exists k. \ x = ((+) 1 ^ k) y \)
- Proof (rule exI[of - nk])
 - From \(k \) have \(x = \text{int} nk + y \) by simp
 - Also have \(... = ((+) 1 ^ nk) y \)
 - By (induct nk, auto)
 - Finally show \(x = ((+) 1 ^ nk) y \).
- QED (auto simp: field-simps power-strict-mono)

5.4 The arctic semiring over the integers

Plus is interpreted as max, times is interpreted as plus, 0 is -infinity, 1 is 0

Datatype \(\text{arctic} = \text{MinInfty} | \text{Num-arc} \text{ int} \)

Instantiation \(\text{arctic} :: \text{ord} \)
fun less-eq-arctic :: arctic ⇒ arctic ⇒ bool where
 less-eq-arctic MinInfty x = True
| less-eq-arctic (Num-arc -) MinInfty = False
| less-eq-arctic (Num-arc y) (Num-arc x) = (y ≤ x)

fun less-arctic :: arctic ⇒ arctic ⇒ bool where
 less-arctic MinInfty x = True
| less-arctic (Num-arc -) MinInfty = False
| less-arctic (Num-arc y) (Num-arc x) = (y < x)

instance ..
end

instantiation arctic :: ordered-semiring-1 begin
fun plus-arctic :: arctic ⇒ arctic ⇒ arctic where
 plus-arctic MinInfty y = y
| plus-arctic x MinInfty = x
| plus-arctic (Num-arc x) (Num-arc y) = (Num-arc (max x y))

fun times-arctic :: arctic ⇒ arctic ⇒ arctic where
 times-arctic MinInfty y = MinInfty
| times-arctic x MinInfty = MinInfty
| times-arctic (Num-arc x) (Num-arc y) = (Num-arc (x + y))

definition zero-arctic :: arctic where
 zero-arctic = MinInfty

definition one-arctic :: arctic where
 one-arctic = Num-arc 0

instance
proof
 fix x y z :: arctic
 show x + y = y + x
 by (cases x, cases y, auto, cases y, auto)
 show (x + y) + z = x + (y + z)
 by (cases x, auto, cases y, auto, cases z, auto)
 show (x * y) * z = x * (y * z)
 by (cases x, auto, cases y, auto, cases z, auto)
 show x * 0 = 0
 by (cases x, auto simp: zero-arctic-def)
 show x * (y + z) = x * y + x * z
 by (cases x, auto, cases y, auto, cases z, auto)
 show (x + y) * z = x * z + y * z
 by (cases x, auto, cases y, cases z, auto, cases z, auto)
 show 1 * x = x
 by (cases x, simp-all add: one-arctic-def)

end
show \(x \times 1 = x \)
by (cases \(x \), simp-all add: one-arctic-def)

show \(0 + x = x \)
by (simp add: zero-arctic-def)

show \(0 \times x = 0 \)
by (simp add: zero-arctic-def)

show \((0 :: \text{arctic}) \neq 1 \)
by (simp add: zero-arctic-def one-arctic-def)

show \(x + 0 = x \) by (cases \(x \), auto simp: zero-arctic-def)

show \(x \geq x \)
by (cases \(x \), auto)

show \((1 :: \text{arctic}) \geq 0 \)
by (simp add: zero-arctic-def one-arctic-def)

show \(\max x y = \max y x \) unfolding max-def
by (cases \(x \), (cases \(y \), auto)+)

show \(\max x y \geq x \) unfolding max-def
by (cases \(x \), (cases \(y \), auto)+)

assume \(ge: x \geq y \)
from \(ge \) show \(x + z \geq y + z \)
by (cases \(x \), cases \(y \), cases \(z \), auto, cases \(y \), cases \(z \), auto, cases \(z \), auto)

from \(ge \) show \(x \times z \geq y \times z \)
by (cases \(x \), cases \(y \), cases \(z \), auto, cases \(y \), cases \(z \), auto, cases \(z \), auto)

from \(ge \) show \(\max x y = x \) unfolding max-def
by (cases \(x \), (cases \(y \), auto)+)

from \(ge \) show \(\max z x \geq \max z y \) unfolding max-def
by (cases \(z \), cases \(x \), auto, cases \(x \), (cases \(y \), auto)+)

next
fix \(x y z :: \text{arctic} \)
assume \(x \geq y \) and \(y \geq z \)
thus \(x \geq z \)
by (cases \(x \), cases \(y \), cases \(y \), cases \(z \), auto, cases \(z \), auto, cases \(z \), auto)

next
fix \(x y z :: \text{arctic} \)
assume \(y \geq z \)
thus \(x \times y \geq x \times z \)
by (cases \(x \), cases \(y \), cases \(z \), auto, cases \(y \), cases \(z \), auto, cases \(z \), auto)

next
fix \(x y z :: \text{arctic} \)
show \(x \geq y \implies 0 \geq z \implies y \times z \geq x \times z \)
by (cases \(z \), cases \(x \), auto simp: zero-arctic-def)

qed

derived
where pos-arctic MinInfty = False
 | pos-arctic (Num-arc n) = (0 <= n)

interpretation arctic-SN: SN-both-mono-ordered-semiring-1 1 (>) pos-arctic

proof
 fix x y z :: arctic
 assume x >= y and y > z
 thus x > z
 by (cases z, simp, cases y, simp, cases x, auto)
next
 fix x y z :: arctic
 assume x > y and y >= z
 thus x > z
 by (cases z, simp, cases y, simp, cases x, auto)
next
 fix x y z :: arctic
 assume x > y
 thus x >= y
 by (cases x, (cases y, auto)+)
next
 fix x y z u :: arctic
 assume x > y and z > u
 thus x + z > y + u
 by (cases y, cases u, simp, cases z, auto, cases x, auto, cases u, auto, cases z, auto, cases x, auto, cases x, auto, cases z, auto, cases x, auto)
next
 fix x y z :: arctic
 assume x > y
 thus x * z > y * z
 by (cases y, simp, cases z, simp, cases x, auto)
next
 fix x :: arctic
 assume 0 > x
 thus x = 0
 by (cases x, auto simp: zero-arctic-def)
next
 fix x :: arctic
 show pos-arctic 1 unfolding one-arctic-def by simp
 show x > 0 unfolding zero-arctic-def by simp
 show (1 :: arctic) >= 0 unfolding zero-arctic-def by simp
 show x >= 0 unfolding zero-arctic-def by simp
 show ~ pos-arctic 0 unfolding zero-arctic-def by simp
next
 fix x y
 assume pos-arctic x
 thus pos-arctic (x + y) by (cases x, simp, cases y, auto)
next
 fix x y
 assume pos-arctic x and pos-arctic y
thus pos-arctic \((x \ast y)\) by \((\text{cases } x, \text{ simp}, \text{ cases } y, \text{ auto})\)

next

show \(\{ (x,y). \text{pos-arctic } y \land x > y \} \) \((\text{is } \text{SN } ?\text{rel})\)

proof = \{

fix \(x\)

assume \(\exists f : f \, 0 = x \land (\forall i. \langle f \, i, f \, (\text{Suc } i) \rangle \in ?\text{rel})\)

from \(\text{this} \) obtain \(f \) where \(f \, 0 = x \) and seq: \(\forall i. \langle f \, i, f \, (\text{Suc } i) \rangle \in ?\text{rel}\) by \(\text{auto}\)

from \(\text{seq} \) have \(\text{steps}: \forall i. f \, i > (\text{Suc } i) \land \text{pos-arctic } (f \, (\text{Suc } i)) \) by \(\text{auto}\)

from \(i \) obtain \(n \) where \(f \, i = \text{Num-arc } n \) by \((\text{cases } f \, (\text{Suc } i), \text{ simp}, \text{ cases } z, \text{ simp}, \text{ cases } y, \text{ auto})\)

with \(i \) have \(\text{gz}: 0 \leq m \) by \(\text{simp}\)

from \(i \) fi fsi have \(n > m \) by \(\text{auto}\)

with \(f \) fsi \(\text{gz}\)

show \(\forall i. g \, (\text{Suc } i) \geq 0 \land g \, i > g \, (\text{Suc } i)\) by \(\text{auto}\)

qed

from \(\text{this} \) obtain \(g \) where \(\forall i. g \, (\text{Suc } i) \geq 0 \land (\forall i. \langle f \, i, f \, (\text{Suc } i) \rangle \in \{(x,y). y \geq 0 \land x > y\})\) by \(\text{auto}\)

with \(\text{int-SN} \, \text{SN} \) have \(\text{False}\) unfolding \(\text{SN-defs}\) by \(\text{auto}\)

\}

thus ?\text{thesis} unfolding \(\text{SN-defs}\) by \(\text{auto}\)

qed

next

fix \(y\) \(z\) \(x\) :: \text{arctic}

assume \(y > z\)

thus \(x \ast y > x \ast z\)

by \((\text{cases } x, \text{ simp}, \text{ cases } z, \text{ simp}, \text{ cases } y, \text{ auto})\)

next

fix \(c\) \(d\)

assume \(\text{pos-arctic } d\)

then obtain \(n \) where \(d = \text{Num-arc } n \) and \(n: 0 \leq n\)

by \((\text{cases } d, \text{ auto})\)

show \(\exists e. e \geq 0 \land \text{pos-arctic } e \land \neg c \geq d \ast e\)

proof \((\text{cases } c)\)

case \(\text{MinInfty}\)

show ?\text{thesis}

by \((\text{rule exI[of - \text{Num-arc } 0]},\)

unfold \(\text{d MinInfty zero-arctic-def, simp})\)

next

case \((\text{Num-arc } m)\)

125
show thesis
 by (rule exI[of - Num-arc (abs m + 1)], insert n,
 unfold d Num-arc zero-arctic-def, simp)
qed
qed

5.5 The arctic semiring over an arbitrary archimedean field
completely analogous to the integers, where one has to use delta-orderings

datatype 'a arctic-delta = MinInfty-delta | Num-arc-delta 'a

instantiation arctic-delta :: (ord) ord
begin
fun less-eq-arctic-delta :: 'a arctic-delta ⇒ 'a arctic-delta ⇒ bool where
 less-eq-arctic-delta MinInfty-delta x = True
| less-eq-arctic-delta (Num-arc-delta y) MinInfty-delta = False
| less-eq-arctic-delta (Num-arc-delta y) (Num-arc-delta x) = (y ≤ x)

fun less-arctic-delta :: 'a arctic-delta ⇒ 'a arctic-delta ⇒ bool where
 less-arctic-delta MinInfty-delta x = True
| less-arctic-delta (Num-arc-delta y) MinInfty-delta = False
| less-arctic-delta (Num-arc-delta y) (Num-arc-delta x) = (y < x)

instance ..
end

instantiation arctic-delta :: (linordered-field) ordered-semiring-1
begin
fun plus-arctic-delta :: 'a arctic-delta ⇒ 'a arctic-delta ⇒ 'a arctic-delta where
 plus-arctic-delta MinInfty-delta y = y
| plus-arctic-delta x MinInfty-delta = x
| plus-arctic-delta (Num-arc-delta x) (Num-arc-delta y) = (Num-arc-delta (max x y))

fun times-arctic-delta :: 'a arctic-delta ⇒ 'a arctic-delta ⇒ 'a arctic-delta where
 times-arctic-delta MinInfty-delta y = MinInfty-delta
| times-arctic-delta x MinInfty-delta = MinInfty-delta
| times-arctic-delta (Num-arc-delta x) (Num-arc-delta y) = (Num-arc-delta (x + y))

definition zero-arctic-delta :: 'a arctic-delta where
 zero-arctic-delta = MinInfty-delta

definition one-arctic-delta :: 'a arctic-delta where
 one-arctic-delta = Num-arc-delta 0

instance
proof
 fix x y z :: 'a arctic-delta
show \(x + y = y + x \)
 by (cases \(x \), cases \(y \), auto, cases \(y \), auto)
show \((x + y) + z = x + (y + z) \)
 by (cases \(x \), auto, cases \(y \), auto, cases \(z \), auto)
show \((x \ast y) \ast z = x \ast (y \ast z) \)
 by (cases \(x \), auto, cases \(y \), auto, cases \(z \), auto)
show \(x \ast 0 = 0 \)
 by (cases \(x \), auto simp: zero-arctic-delta-def)
show \(x \ast (y + z) = x \ast y + x \ast z \)
 by (cases \(x \), auto, cases \(y \), auto, cases \(z \), auto)
show \((x + y) \ast z = x \ast z + y \ast z \)
 by (cases \(x \), auto, cases \(y \), cases \(z \), auto, cases \(z \), auto)
show \(1 \ast x = x \)
 by (cases \(x \), simp-all add: one-arctic-delta-def)
show \(x \ast 1 = x \)
 by (cases \(x \), simp-all add: one-arctic-delta-def)
show \(0 + x = x \)
 by (simp add: zero-arctic-delta-def)
show \(0 \ast x = 0 \)
 by (simp add: zero-arctic-delta-def)
show \((0 :: 'a arctic-delta) \neq 1 \)
 by (simp add: zero-arctic-delta-def one-arctic-delta-def)
show \(x + 0 = x \) by (cases \(x \), auto simp: zero-arctic-delta-def)
show \(x \geq x \)
 by (cases \(x \), auto)
show \((1 :: 'a arctic-delta) \geq 0 \)
 by (simp add: zero-arctic-delta-def one-arctic-delta-def)
show \(\max x y = \max y x \) unfolding max-def
 by (cases \(x \), (cases \(y \), auto)+)
show \(\max x y \geq x \) unfolding max-def
 by (cases \(x \), (cases \(y \), auto)+)
assume \(\geq: x \geq y \)
from \(\geq \) show \(x + z \geq y + z \)
 by (cases \(x \), cases \(y \), cases \(z \), auto, cases \(y \), cases \(z \), auto, cases \(z \), auto)
from \(\geq \) show \(x \ast z \geq y \ast z \)
 by (cases \(x \), cases \(y \), cases \(z \), auto, cases \(y \), cases \(z \), auto, cases \(z \), auto)
from \(\geq \) show \(\max x y = x \) unfolding max-def
 by (cases \(x \), (cases \(y \), auto)+)
from \(\geq \) show \(\max x y \geq \max z y \) unfolding max-def
 by (cases \(z \), cases \(x \), auto, cases \(x \), (cases \(y \), auto)+)

next
fix \(x y z :: 'a arctic-delta \)
assume \(x \geq y \) and \(y \geq z \)
thus \(x \geq z \)
 by (cases \(x \), cases \(y \), auto, cases \(y \), cases \(z \), auto, cases \(z \), auto)

next
fix \(x y z :: 'a arctic-delta \)
assume \(y \geq z \)
thus \(x \ast y \geq x \ast z \)
by (cases x, cases y, cases z, auto, cases y, cases z, auto, cases z, auto)

next
fix x y z :: 'a arctic-delta
show x ≥ y ⇒ 0 ≥ z ⇒ y * z ≥ x * z
 by (cases z, cases x, auto simp: zero-arctic-delta-def)
qed
end

x ¿d y is interpreted as y = -inf or (x,y != -inf and x ¿d y)

fun gt-arctic-delta :: 'a :: floor-ceiling ⇒ 'a arctic-delta ⇒ 'a arctic-delta ⇒ bool
where gt-arctic-delta δ - MinInfty-delta = True
 | gt-arctic-delta δ MinInfty-delta (Num-arc-delta -) = False
 | gt-arctic-delta δ (Num-arc-delta x) (Num-arc-delta y) = delta-gt δ x y

fun get-arctic-delta-num :: 'a arctic-delta ⇒ 'a
where get-arctic-delta-num (Num-arc-delta n) = n

fun pos-arctic-delta :: ('a :: floor-ceiling) arctic-delta ⇒ bool
where pos-arctic-delta MinInfty-delta = False
 | pos-arctic-delta (Num-arc-delta n) = (0 ≤ n)

lemma arctic-delta-interpretation: assumes dpos: δ > 0 shows SN-both-mono-ordered-semiring-1
 δ (gt-arctic-delta δ) pos-arctic-delta
proof –
from delta-interpretation[OF dpos] interpret SN-strict-mono-ordered-semiring-1
δ delta-gt δ delta-mono by simp
 show ?thesis
proof
 fix x y z :: 'a arctic-delta
 assume x ≥ y and gt-arctic-delta δ y z
 thus gt-arctic-delta δ x z
 by (cases z, simp, cases y, simp, cases x, simp, simp add: compat)
next
 fix x y z :: 'a arctic-delta
 assume gt-arctic-delta δ x y and y ≥ z
 thus gt-arctic-delta δ x z
 by (cases z, simp, cases y, simp, cases x, simp, simp add: compat2)
next
 fix x y :: 'a arctic-delta
 assume gt-arctic-delta δ x y
 thus x ≥ y
 by (cases x, insert dpos, (cases y, auto simp: delta-gt-def)+)
next
 fix x y z u
 assume gt-arctic-delta δ x y and gt-arctic-delta δ z u
 thus gt-arctic-delta δ (x + z) (y + u)
 by (cases y, cases u, simp, cases z, simp, cases x, simp, simp add: delta-gt-def)
cases z, cases x, simp, cases u, simp, cases x, simp, cases z, simp,
cases u, simp add: delta-gt-def, simp add: delta-gt-def)

next
 fix x y z
 assume gt-arctic-delta δ x y
 thus gt-arctic-delta δ (x * z) (y * z)
 by (cases y, simp, cases z, simp, cases x, simp, simp add: plus-gt-left-mono)

next
 fix x
 assume gt-arctic-delta δ 0 x
 thus x = 0
 by (cases x, auto simp: zero-arctic-delta-def)

next
 fix x y :: 'a arctic-delta
 assume pos-arctic-delta x
 thus pos-arctic-delta (x + y)
 by (cases x, auto)

next
 show pos-arctic-delta 1 unfolding one-arctic-delta-def

next
 show SN {(x, y). pos-arctic-delta y ∧ gt-arctic-delta δ x y}
 (is SN ?rel)
proof - { Fix x
 assume ∃ f. f 0 = x ∧ (∀ i. (f i, f (Suc i)) ∈ ?rel)
 from this obtain f where f 0 = x and seq: ∀ i. (f i, f (Suc i)) ∈ ?rel
 by auto
 from seq have steps: ∀ i. gt-arctic-delta δ (f i) (f (Suc i)) ∧ pos-arctic-delta
 (f (Suc i)) by auto
 let ?g = λ i. get-arctic-delta-num (f i)
 have ∀ i. ?g (Suc i) ≥ 0 ∧ delta-gt δ (?g i) (?g (Suc i))
 proof
 fix i
 from steps have i: gt-arctic-delta δ (f i) (f (Suc i)) ∧ pos-arctic-delta (f (Suc i))
 by auto
 from i obtain n where fi: f i = Num-arc-delta n by (cases f (Suc i),
 simp, cases f i, auto)
 from i obtain m where fsi: f (Suc i) = Num-arc-delta m by (cases f (Suc i),
 auto)
 with i have gz: 0 ≤ m by simp
 from i fi fsi have delta-gt δ n m by auto
 with fi fsi gz
show \(?g \, (\text{Suc} \, i) \geq 0 \land \text{delta-gt} \, \delta \, (?g \, i) \, (?g \, (\text{Suc} \, i))\) by auto
qed
from this obtain \(g\) where \(\forall \, i. \, g \, (\text{Suc} \, i) \geq 0 \land \text{delta-gt} \, \delta \, (g \, i) \, (g \, (\text{Suc} \, i))\)
by auto
hence \(\exists \, f. \, f \, 0 \, = \, g \, 0 \land (\forall \, i. \, (f \, i, \, f \, (\text{Suc} \, i)) \in \{(x,y). \, y \geq 0 \land \text{delta-gt} \, \delta \, x \, y\})\) by auto
with SN have False unfolding SN-defs by auto
}
thus \(?thesis\) unfolding SN-defs by auto
qed
next
fix \(c \, d\) :: \('a \text{ arctic-delta}\)
assume \(\text{pos-arctic-delta} \, d\)
then obtain \(n\) where \(d \, = \, \text{Num-arc-delta} \, n\) and \(n: \, 0 \leq \, n\)
by (cases \(d\), auto)
show \(\exists \, e. \, e \geq 0 \land \text{pos-arctic-delta} \, e \land \neg \, c \geq \, d \ast \, e\)
proof (cases \(c\))
case \(\text{MinInfty-delta}\)
show \(?thesis\)
by (rule exI[of - \, \text{Num-arc-delta} \, 0],
unfold \(d\) MinInfty-delta zero-arctic-delta-def, simp)
next
case \(\text{Num-arc-delta} \, m\)
show \(?thesis\)
by (rule exI[of - \, \text{Num-arc-delta} \, (abs \, m \, + \, 1)],
insert \(n\),
unfold \(d\) MinInfty-delta zero-arctic-delta-def, simp)
qed
next
fix \(x \, y \, z\)
assume \(\text{gt}: \, \text{gt-arctic-delta} \, \delta \, y \, z\)
{
fix \(x \, y \, z\)
assume \(\text{gt}: \, \text{delta-gt} \, \delta \, y \, z\)
have \(\text{delta-gt} \, \delta \, (x \, + \, y) \, (x \, + \, z)\)
using plus-gt-left-mono[OF \(\text{gt}\)] by (auto simp: field-simps)
}
with \(\text{gt}\) show \(\text{gt-arctic-delta} \, \delta \, (x \, + \, y) \, (x \, + \, z)\)
by (cases \(x\), simp, cases \(z\), simp, cases \(y\), simp-all)
qed
qed

fun weak-gt-arctic-delta :: ('a :: floor-ceiling) arctic-delta ⇒ 'a arctic-delta ⇒ bool
where weak-gt-arctic-delta - MinInfty-delta = True
 | weak-gt-arctic-delta MinInfty-delta (Num-arc-delta -) = False
 | weak-gt-arctic-delta (Num-arc-delta \(x\)) (Num-arc-delta \(y\)) = \((x > \, y)\)

interpretation weak-arctic-delta-SN: weak-SN-both-mono-ordered-semiring-1 weak-gt-arctic-delta
1 pos-arctic-delta
proof
fix xys
assume orient: ∀ x y. (x,y) ∈ set xys → weak-gt-arctic-delta x y
obtain xysp where xysp: xysp = map (λ (ax, ay). (case ax of Num-arc-delta x ⇒ x , case ay of Num-arc-delta y ⇒ y)) \((\text{filter} (λ (ax,ay). ax \neq \text{MinInfty-delta} \land ay \neq \text{MinInfty-delta}) xys)\)
(is - = map ?f -)
by auto
have ∀ x y. (x,y) ∈ set xysp → x > y
proof (intro allI implI)
fix x y
assume (x,y) ∈ set xysp
with xysp obtain az ay where (az,ay) ∈ set xys and ax \neq \text{MinInfty-delta}
and ay \neq \text{MinInfty-delta} and (x,y) = ?f (az,ay) by auto
hence (Num-arc-delta x, Num-arc-delta y) ∈ set xys by (cases ax, simp, cases ay, auto)
with orient show x > y by force
qed

with delta-minimal-delta[of xysp] obtain δ where dpos: δ > 0 and orient2: \(\forall x y. (x,y) \in \text{set xysp} \implies \text{delta-gt}\ \delta\ \ x\ \ y\) by auto
have orient: ∀ x y. (x,y) ∈ set xys → gt-arctic-delta \(\delta\ \ x\ \ y\)
proof(intro allI implI)
fix ax ay
assume axay: (ax,ay) ∈ set xys
with orient have orient: weak-gt-arctic-delta ax ay by auto
show gt-arctic-delta \(\delta\ \ ax\ \ ay\)
proof (cases ax, simp)
case (Num-arc-delta y) note ay = this
show ?thesis
proof (cases ax)
case \text{MinInfty-delta}
with ay orient show ?thesis by auto
next
case (Num-arc-delta x) note ax = this
from ax ay axay have (x,y) ∈ set xysp unfolding xysp by force
from ax ay orient2 [OF this] show ?thesis by simp
qed
qed
qed
show ∃ gt. SN-both-mono-ordered-semiring-1 \(\text{gt}\ \text{pos-arctic-delta} \land (\forall x y. (x, y) \in \text{set xys} \implies \text{gt}\ \ x\ \ y)\)
by (intro exI conjI, rule arctic-delta-interpretation[OF dpos], rule orient)
qed

end
References

