
Abel’s Limit Theorem in Isabelle/HOL

Kangfeng Ye
University of York, UK

kangfeng.ye@york.ac.uk

January 23, 2026

Abstract
This theory proves the Abel’s limit theorem on power series of real
numbers, and then an example is shown to use the theorem to cover
the boundary cases of binomial series.

Contents
1 Abel’s limit theorem on real power series 1

2 Example application: boundary cases of binomial theorem 11
2.1 Binomial series . 12
2.2 Alternating series . 15
2.3 Binomial sqrt series with the boundary cases 18

1 Abel’s limit theorem on real power series
theory Abel-Limit-Theorem

imports HOL−Analysis.Generalised-Binomial-Theorem
begin

Abel’s theorem or Abel’s limit theorem [3] provides a crucial link between
the behavior of a power series inside its interval of convergence (such as
(−1, 1)) and its value at the boundary such as −1 or 1.
This section presents the proof of Abel’s limit theorem, which relates a limit
of a power series to the sum of its real coefficients, as shown below:

lim
x→1−

f(x) = f(1) =
∞∑
k=0

ak where f(x) =
∞∑
k=0

akx
k

if the power series has its radius of convergence equal to 1 and
∑∞

k=0 ak
converges, where ak is the coefficient of the k-th term.

1

That is, f(x) is continuous from the left at 1.

The proof of continuity or the limit of f(x) is based on the ε-δ definition.
This proof uses summation by parts or Abel transformation to express the
power series f(x) as a power series whose coefficients are the partial sums
(
∑n

k=0 ak) of the coefficients of f(x), instead of ak. Then the new power
series is split into two parts. The goal is to show that each part contributes
to ε/2 for any x satisfying (1− x) < δ.
Several references [3, 1, 2] are used to construct this proof.
theorem Abel-limit-theorem:

fixes a :: nat ⇒ real
defines f1 ≡ (λ(x::real) n. a n ∗ x ^ n)
defines f ≡ (λ(x::real).

∑
n. f1 x n)

assumes summable-a: summable a and
conv-radius-1 : conv-radius a = 1

shows (f −−−→ (
∑

n. a n)) (at-left 1)
proof −

— This is the partial sum of coefficients up to n.
let ?s = λn. (

∑
k≤n. a k)

— S is the infinite sum of the coefficients.
obtain S where P-S : (

∑
n. a n) = S

using summable-a by simp

let ?fs-S = λx n. ((?s n − S) ∗ x ^ n)
let ?fs-S-sum = λx. (

∑
n. ?fs-S x n)

have s-limit-S : ?s −−−−→ S
using P-S summable-a summable-LIMSEQ ′ by blast

have summable-f1 : ∀ x. norm x < 1 −→ summable (λn. f1 x n)
by (simp only: f1-def , auto, rule summable-in-conv-radius, simp add: conv-radius-1)

— A geometric series sums to 1 / (1 − x). Therefore, (1−x)∗(1 / (1 − x)) = 1.
have geometric: ∀ x::real. norm x < 1 −→ (

∑
n. x ^ n) = 1 / (1 − x)

by (auto simp add: suminf-geometric)

— The Cauchy product of a geometric series and a convergent power series is a
power series whose coefficient for the nth term is the partial sum up to n, that is,
?s n.

have cauchy-product-to-partial-sum: (
∑

n. x ^ n) ∗ f x = (
∑

n. ?s n ∗ x ^ n)
if a1 : norm x < 1 for x :: real

proof −
from a1 have x-lt-1 : |x| < 1

by (simp)

show (
∑

n. x ^ n) ∗ f x = (
∑

n. ?s n ∗ x ^ n)
proof −

2

have f0 : ∀n. ∀ i≤n. x ^ i ∗ (a (n − i) ∗ x ^ (n − i)) = a (n − i) ∗ x ^ n
apply auto[1]
by (metis le-add-diff-inverse power-add)

have f1 : ∀n. (
∑

i≤n. x ^ i ∗ (a (n − i) ∗ x ^ (n − i))) = (
∑

i≤n. a (n −
i) ∗ x ^ n)

by (auto simp: f0)

have f2 : ∀n. (
∑

i≤n. a (n − i)) = ?s n
proof (rule allI)

fix n::nat
show (

∑
i≤n. a (n − i)) = ?s n

by (rule sum.reindex-bij-witness[of - λi. n − i λi. n − i]) auto
qed

show ?thesis
unfolding f-def f1-def

proof (subst Cauchy-product)
show summable (λk. norm (x ^ k))

by (simp add: power-abs x-lt-1)
next

show summable (λk. norm (a k ∗ x ^ k))
by (metis abs-summable-in-conv-radius conv-radius-1 ereal-less(3) real-norm-def

x-lt-1)
next

show (
∑

k.
∑

i≤k. x ^ i ∗ (a (k − i) ∗ x ^ (k − i))) =
(
∑

n. sum a {..n} ∗ x ^ n)
by (subst f1) (use f2 in ‹simp-all flip: sum-distrib-right›)

qed
qed

qed

have summable-s-n-x-n: ∀ x::real. norm x < 1 −→ (summable (λn. ?s n ∗ x ^
n))

proof (rule allI , rule impI)
fix x::real

assume a1 : norm x < 1
from a1 have x-lt-1 : |x| < 1

by (simp)

have (
∑

n. ?s n ∗ x ^ n) = (
∑

n. x ^ n) ∗ f x
using cauchy-product-to-partial-sum real-norm-def x-lt-1 by presburger

have f0 : (λn. ?s n ∗ x ^ n) = (λn.
∑

i≤n. a i ∗ x ^ n)
using sum-distrib-right by blast

have f1 : ... = (λn.
∑

i≤n. (a i ∗ x ^ i) ∗ (x ^ (n − i)))
apply (simp only: mult.assoc)

3

apply (subst power-add[symmetric])
by simp

show summable (λn. ?s n ∗ x ^ n)
apply (simp only: f0 f1)
apply (rule summable-Cauchy-product[where a = λn. (a n) ∗ x ^ n and b

= λn. x ^ n])
apply (metis abs-summable-in-conv-radius conv-radius-1 ereal-less(3) real-norm-def

x-lt-1)
by (simp add: power-abs x-lt-1)

qed

— The power series f x is expressed as a convex combination of the partial sums.
have f-x-to-partial-sum: ∀ x::real. norm x < 1 −→ f x = (1 − x) ∗ (

∑
n. ?s n ∗

x ^ n)
proof (rule allI , rule impI)

fix x::real

assume a1 : norm x < 1
from a1 have x-lt-1 : |x| < 1

by (simp)

— Rewrite f x because (1 − x) ∗ (
∑

n. x ^ n) = 1.
have f-rewrite: f x = (1 − x) ∗ (

∑
n. x ^ n) ∗ f x

using geometric x-lt-1 by fastforce

— According to the Cauchy product result.
then show f x = (1 − x) ∗ (

∑
n. ?s n ∗ x ^ n)

using cauchy-product-to-partial-sum mult.assoc by (metis real-norm-def
x-lt-1)

qed

— The difference between f x and S, therefore, can be expressed as a convex
combination of the partial sum minus S. So the goal is to show RHS tends to 0
when x approaches 1 from left.

have f-x-minus-S : ∀ x::real. norm x < 1 −→ f x − S = (1 − x) ∗ ?fs-S-sum x
proof (rule allI , rule impI)

fix x::real

assume a1 : norm x < 1
from a1 have x-lt-1 : |x| < 1

by (simp)

have f0 : (1 − x) ∗ (
∑

n. ?s n ∗ x ^ n) − S = (1 − x) ∗ (
∑

n. ?s n ∗ x ^ n)
− (1 − x) ∗ S ∗ (

∑
n. x ^ n)

apply (simp add: geometric)
using geometric x-lt-1 by auto

have f1 : ... = (1 − x) ∗ ((
∑

n. ?s n ∗ x ^ n) − (
∑

n. S ∗ x ^ n))

4

apply (subst suminf-mult)
apply (rule summable-geometric)
apply (simp add: x-lt-1)

by (simp add: right-diff-distrib)

show f x − S = (1 − x) ∗ ?fs-S-sum x
apply (simp only: f-x-to-partial-sum a1)
apply (simp only: f0 f1)
apply (subst suminf-diff)

using real-norm-def summable-s-n-x-n x-lt-1 apply presburger
apply (rule summable-mult)
apply (simp add: x-lt-1)

by (simp add: left-diff-distrib ′)
qed

have summable-norm-s-S : ∀ x::real. norm x < 1 −→ summable (λn::nat. norm
(?s n − S) ∗ (norm x) ^ (n))

proof (rule allI , rule impI)
fix x::real
assume x-lt-1 : norm x < 1
obtain M where P-m: ∀n. norm (?s n) ≤ M

using convergent-imp-bounded[of ?s] by (metis UNIV-I bounded-iff imageI
s-limit-S)

have ∀n. norm (?s n − S) ∗ (norm x) ^ (n) ≤ (M + norm S) ∗ (norm x)^n
proof (rule allI)

fix n :: nat
have norm (?s n − S) ∗ (norm x) ^ (n) ≤ (norm (?s n) + norm S) ∗ (norm

x) ^ (n)
by (simp add: mult-mono)

also have ... ≤ (M + norm S) ∗ (norm x)^n
by (metis P-m add.commute add-le-cancel-left mult.commute mult-left-mono

norm-ge-zero norm-power)
finally show norm (?s n − S) ∗ (norm x) ^ (n) ≤ (M + norm S) ∗ (norm

x) ^ n
by blast

qed
moreover have summable (λn. (M + norm S) ∗ (norm x)^n)

using x-lt-1 by (simp add: summable-mult summable-geometric)
ultimately show summable (λn::nat. norm (?s n − S) ∗ norm x ^ n)

using summable-comparison-test[of λn. norm (?s n − S) ∗ (norm x) ^ (n)
λn. (M + norm S) ∗ (norm x)^n]

by fastforce
qed

have summable-norm-fs-S : ∀ x::real. norm x < 1 −→ summable (λn. norm (?fs-S
x n))

proof (rule allI , rule impI)
fix x::real

5

assume x-lt-1 : norm x < 1
obtain M where P-m: ∀n. norm (?s n) ≤ M

using convergent-imp-bounded[of ?s] by (metis UNIV-I bounded-iff imageI
s-limit-S)

have ∀n. norm (?fs-S x n) ≤ (M + norm S) ∗ (norm x)^n
proof (rule allI)

fix n :: nat
have norm ((?s n − S) ∗ x ^ n) ≤ norm ((?s n − S)) ∗ norm (x ^ n)

using norm-mult-ineq by blast
also have ... ≤ (norm (?s n) + norm S) ∗ norm (x ^ n)

by (simp add: mult-mono)
also have ... ≤ (M + norm S) ∗ (norm x)^n
by (metis P-m add.commute add-le-cancel-left mult.commute mult-left-mono

norm-ge-zero norm-power)
finally show norm ((?s n − S) ∗ x ^ n) ≤ (M + norm S) ∗ norm x ^ n

by blast
qed
moreover have summable (λn. (M + norm S) ∗ (norm x)^n)

using x-lt-1 by (simp add: summable-mult summable-geometric)
ultimately show summable (λn. norm (?fs-S x n))

using summable-comparison-test[of λn. norm (?fs-S x n) λn. (M + norm S)
∗ (norm x)^n]

by fastforce
qed

— Use the ε-δ definition of a continuous function or a limit.
have S-is-f-limit-from-left: (f −−−→ S) (at-left (1))
proof (simp only: tendsto-iff eventually-at-left-field, simp only: dist-norm, rule

allI , rule impI)
— r is the difference of function f x from f 1
fix r ::real
assume r-gt-0 : (0 ::real) < r

— Try to make both tail and head parts contribute r/2, so finally r.
define e where e = r/2

have e-gt-0 : 0 < e
by (simp add: r-gt-0 e-def)

— M is not necessary to be positive and can be 0.
obtain M where P-M : (∀n ≥ M . norm (?s n − S) < e)

using s-limit-S LIMSEQ-iff e-gt-0 real-norm-def by metis

— Make N be positive, which will be used later to ensure norm x ^ N < 1
define N where N = M + 1

— C is the sum of differences up to N.
define C where C = (

∑
k<N . norm (?s k − S))

6

have P-N : (∀n ≥ N . norm (?s n − S) < e)
unfolding N-def using P-M by simp

— Split the sum into two parts based on its index: {0 ..N−1} and {N ..∞}, also
called the head part and the tail part.

have fs-S-split: ∀ x::real. norm x < 1 −→ (1 − x) ∗ ?fs-S-sum x
= (1 − x) ∗ (

∑
n < N . ?fs-S x n) + (1 − x) ∗ (

∑
n. ?fs-S x (n + N))

proof (rule allI , rule impI)
fix x::real

assume a1 : norm x < 1
from a1 have x-lt-1 : |x| < 1

by (simp)

have (
∑

n. ?fs-S x n) = (
∑

n<N . ?fs-S x n) + (
∑

n. ?fs-S x (n + N)) (is
... = ?fs-S-sum-hd + ?fs-S-sum-tl)

apply (subst suminf-split-initial-segment[where k = N])
using summable-norm-fs-S real-norm-def summable-norm-cancel x-lt-1

apply fastforce
by linarith

then show (1 − x) ∗ (
∑

n. ?fs-S x n) = (1 − x) ∗ (
∑

n<N . ?fs-S x n) +
(1 − x) ∗ (

∑
n. ?fs-S x (n + N))

by (simp add: distrib-left)
qed

— For the tail part, it is less than e.
have fs-S-tail: ∀ x::real. 0 < x ∧ norm x < 1 −→ norm ((1 − x) ∗ (

∑
n. ?fs-S

x (n + N))) < e
proof (rule allI , rule impI)

fix x::real
assume x-lt-1 : (0 ::real) < x ∧ norm x < 1
have x-N-le-1 : norm x ^ N < 1

using power-Suc-less-one P-N N-def x-lt-1 by fastforce
have norm ((1 − x) ∗ (

∑
n. ?fs-S x (n + N))) ≤ norm ((1 − x)) ∗ norm

(
∑

n. ?fs-S x (n + N))
using norm-mult-ineq by blast

also have ... ≤ (1 − x) ∗ (
∑

n. norm (?fs-S x (n + N)))
apply (subgoal-tac norm (1−x) = 1−x)

apply (subgoal-tac norm (
∑

n. ?fs-S x (n + N)) ≤ (
∑

n. norm (?fs-S x
(n + N))))

subgoal by (simp add: mult-mono)
apply (subst summable-norm)
apply (subst summable-iff-shift)
using summable-norm-fs-S x-lt-1 apply blast

apply simp
using x-lt-1 by fastforce

also have ... ≤ (1 − x) ∗ (
∑

n. norm (?s (n + N) − S) ∗ (norm x) ^ (n +
N))

7

by (smt (z3) norm-mult norm-power suminf-cong)
also have ... ≤ (1 − x) ∗ (

∑
n. e ∗ (norm x) ^ (n + N))

apply (rule mult-mono)
apply simp

apply (rule suminf-le)
apply (smt (verit) P-N le-add2 mult-right-mono norm-ge-zero zero-le-power)

apply (subst summable-iff-shift)
using summable-norm-s-S x-lt-1 apply blast

apply (subst summable-iff-shift)
using x-lt-1 apply force

using x-lt-1 apply auto[1]
by (smt (z3) calculation real-norm-def x-lt-1 zero-le-mult-iff)

also have ... = (1 − x) ∗ e ∗ (norm x) ^ N ∗ (
∑

n. (norm x) ^ (n))
apply (subst suminf-mult)
using x-lt-1 apply force

apply (simp only: power-add)
apply (subgoal-tac (

∑
n::nat. norm x ^ n ∗ norm x ^ N) = norm x ^ N ∗

(
∑

n::nat. norm x ^ n))
apply simp

apply (subst suminf-mult[symmetric])
using x-lt-1 apply auto[1]

by (meson mult.commute)
also have ... = (1 − x) ∗ e ∗ (norm x) ^ N ∗ 1 / (1 − norm x)

apply (subst suminf-geometric)
using x-lt-1 apply fastforce

using times-divide-eq-right by blast
also have ... = e ∗ (norm x) ^ N

using x-lt-1 by fastforce
also have ... < e

using x-N-le-1 using e-gt-0 by force
finally show norm ((1 − x) ∗ (

∑
n. ?fs-S x (n + N))) < e

by blast
qed

— For the head part, it is bounded by C.
have fs-S-head: ∀ x::real. 0 < x ∧ norm x < 1 −→ norm ((1 − x) ∗ (

∑
n <

N . ?fs-S x n)) ≤ (1−x)∗C
proof (rule allI , rule impI)

fix x::real
assume x-lt-1 : (0 ::real) < x ∧ norm x < 1
have norm ((1 − x) ∗ (

∑
n < N . ?fs-S x n)) ≤ norm ((1 − x)) ∗ norm

(
∑

n < N . ?fs-S x n)
using norm-mult-ineq by blast

also have ... ≤ (1 − x) ∗ (
∑

n < N . norm (?fs-S x (n)))
apply (subgoal-tac norm (1−x) = 1−x)
apply (subgoal-tac norm (

∑
n<N . ?fs-S x (n)) ≤ (

∑
n<N . norm (?fs-S x

(n))))
apply (simp add: mult-mono)

using norm-sum apply blast

8

using x-lt-1 by fastforce
also have ... ≤ (1 − x) ∗ (

∑
n<N . norm (?s (n) − S) ∗ (norm x) ^ (n))

by (smt (verit) norm-mult norm-power sum.cong)
also have ... ≤ (1 − x) ∗ (

∑
n<N . norm (?s (n) − S))

apply (rule mult-mono)
subgoal by simp

apply (rule sum-le-included[where i = λx. x])
subgoal by simp
subgoal by simp
subgoal by simp

apply (smt (verit) mult-left-le power-le-one-iff real-norm-def x-lt-1)
using x-lt-1 apply force

by (simp add: sum-nonneg)
finally show norm ((1 − x) ∗ (

∑
n < N . ?fs-S x n)) ≤ (1−x)∗C

by (simp add: C-def)
qed

have C-nonneg: C ≥ 0
by (simp add: C-def N-def)

show ∃ b<1 ::real. ∀ y>b. y < (1 ::real) −→ norm (f y − S) < r
proof (cases C = 0)

case True
then show ?thesis

— Any x between 0 and 1 because the head part is 0 and only consider the
tail part

proof (intro exI [of - 0 .9])
show (9 ::real) / (10 ::real) < 1 ∧ (∀ y>(9 ::real) / (10 ::real). y < 1 −→

norm (f y − S) < r)
proof (rule conjI)

show (9 ::real) / (10 ::real) < 1
by simp

show ∀ y>(9 ::real) / (10 ::real). y < 1 −→ norm (f y − S) < r
proof (rule allI , rule impI , rule impI)

fix y::real
assume y-gt-0 : (9 ::real) / (10 ::real) < y
assume y-lt-1 : y < (1 ::real)

have norm ((1 − y) ∗ (
∑

n::nat<N . (?s n − S) ∗ y ^ n) +
(1 − y) ∗ (

∑
n::nat. (?s (n + N) − S) ∗ y ^ (n + N))) < r

proof (rule norm-triangle-lt)
have norm ((1 − y) ∗ (

∑
n < N . ?fs-S y n)) ≤ (1−y)∗C

apply (subst fs-S-head)
using y-gt-0 y-lt-1 apply force

by simp
also have ... = 0

by (simp add: True)
also have head-0 : norm ((1 − y) ∗ (

∑
n < N . ?fs-S y n)) = 0

using calculation by force

9

also have tail-lt-e: norm ((1 − y) ∗ (
∑

n. ?fs-S y (n + N))) < e
apply (subst fs-S-tail)
using y-gt-0 y-lt-1 apply force

by simp
finally show norm ((1 − y) ∗ (

∑
n < N . ?fs-S y n)) +

norm ((1 − y) ∗ (
∑

n. ?fs-S y (n + N))) < r
using e-def e-gt-0 head-0 tail-lt-e by linarith

qed
then show norm (f y − S) < r

apply (subst f-x-minus-S)
using y-gt-0 y-lt-1 apply simp

apply (subst fs-S-split)
using y-gt-0 y-lt-1 apply simp
by blast

qed
qed

qed
next

case False
then show ?thesis
— This witness is to ensure (1−x)∗C ≤ e.
proof (intro exI [of - 1 − min (e/C) 1])
show 1 − min (e / C) 1 < 1 ∧ (∀ y>1 − min (e / C) 1 . y < 1 −→ norm

(f y − S) < r)
proof (rule conjI)

show 1 − min (e / C) 1 < 1
using C-nonneg r-gt-0 False e-gt-0 by fastforce

show ∀ y>1 − min (e / C) 1 . y < 1 −→ norm (f y − S) < r
proof (rule allI , rule impI , rule impI)

fix y::real
assume y-gt-0 : (1 ::real) − min (e / C) (1 ::real) < y
assume y-lt-1 : y < (1 ::real)

have norm ((1 − y) ∗ (
∑

n < N . ?fs-S y n)) ≤ (1−y)∗C
apply (subst fs-S-head)
using y-gt-0 y-lt-1 apply force

by simp
also have ... ≤ e

by (smt (verit) C-nonneg False e-def pos-divide-less-eq y-gt-0)
also have tail-lt-e: norm ((1 − y) ∗ (

∑
n. ?fs-S y (n + N))) < e

apply (subst fs-S-tail)
using y-gt-0 y-lt-1 apply force

by simp
show norm (f y − S) < r

apply (subst f-x-minus-S)
using y-lt-1 y-gt-0 apply force

apply (subst fs-S-split)
using y-lt-1 y-gt-0 apply force

apply (rule norm-triangle-lt)

10

using calculation e-def tail-lt-e by linarith
qed

qed
qed

qed
qed

show ?thesis
using P-S S-is-f-limit-from-left by blast

qed

lemma filterlim-at-right-at-left-eq:
shows ((λx. f (−x)) −−−→ l) (at-right (−1)) ←→ ((λx. f (x)) −−−→ l) (at-left

(1 ::real))
apply (rule iffI)
apply (simp add: at-left-minus)
apply (simp add: filterlim-filtermap)

apply (subst at-right-minus)
by (simp add: filterlim-filtermap)

Abel’s limit theorem is also suitable for continuous from the right at -1.
corollary Abel-limit-theorem ′:

fixes a :: nat ⇒ real
defines f1 ≡ (λ(x::real) n. a n ∗ x ^ n)
defines f ≡ (λ(x::real).

∑
n. f1 x n)

assumes summable-a: summable a and
conv-radius-1 : conv-radius a = 1

shows ((λx. f (−x)) −−−→ (
∑

n. a n)) (at-right (−1))
apply (simp add: filterlim-at-right-at-left-eq)
using assms Abel-limit-theorem by blast

end

2 Example application: boundary cases of bino-
mial theorem

theory Binomial-Sqrt-Series-Boundary
imports

Abel-Limit-Theorem
Catalan-Numbers.Catalan-Numbers
HOL−Real-Asymp.Real-Asymp

begin

Newton’s generalized binomial theorem is applicable to |x| < 1 as seen
from this |?z| < 1 =⇒ (λn. (1 / 2 gchoose n) ∗ ?zn) sums sqrt (1 + ?z).
However, it doesn’t apply to the boundary cases where |x| = 1 or |x| = −1.
Here, Abel’s limit theorem is applied to establish the binomial theorem for
the boundary cases.

11

2.1 Binomial series
lemma binomial-sqrt-series:

fixes x :: real
assumes |x| < 1
shows suminf (λn. ((1/2) gchoose n) ∗ x ^ n) = sqrt (1 + x)
apply (subst sums-unique[where s = sqrt (1 + x) and f = (λn. ((1/2) gchoose

n) ∗ x ^ n)])
apply (rule sqrt-series[where z = x])
using assms apply blast

by simp

The generalized binomial coefficient a gchoose n where a = 1
2 can also be

rewritten as an expression including a Catalan numbers. This is used to
prove its summability using the property of Catalan numbers.
lemma gbinomial-1-2-catalan: ((1/2) gchoose (Suc n)) = ((−1)^(n)/(2^(2∗n+1)))
∗ real (catalan n)

by (subst catalan-closed-form-gbinomial) (simp add: power-mult power-minus ′)

lemma gbinomial-1-2-catalan ′: ((1/2) gchoose (Suc n)) = ((−1)^n/2) ∗ (1/4^n)
∗ real (catalan n)

by (subst gbinomial-1-2-catalan) (simp-all add: power-mult)

Rewrite the generalized binomial coefficient a gchoose n where a = 1
2 as a

binomial coefficient.
lemma gbinomial-1-2-simp:
((1/2) gchoose (Suc n)) = ((−1)^n / real (2^(2∗n+1) ∗ (Suc n))) ∗ ((2∗n)

choose n)
by (subst gbinomial-1-2-catalan, subst of-nat-catalan-closed-form)

(auto simp: algebra-simps)

lemma summable-real-powr-iff ′: summable (λn. 1 / of-nat n powr s :: real) ←→
s > 1

apply (subgoal-tac ∀ n. 1 / of-nat n powr s = of-nat n powr (−s))
apply (simp)
using summable-real-powr-iff apply auto[1]

by (simp add: powr-minus-divide)

lemma summable-1-2-gchoose: summable (λn. ((1 ::real)/2) gchoose n)
proof −

have f0 : (λn. ((1/2) gchoose (Suc n))) ∼[at-top] (λn. (((−1)^n/2) ∗ (1/4^n))
∗ (4^n / ((sqrt pi ∗ n powr (3/2)))))

apply (simp only: gbinomial-1-2-catalan ′)
apply (subst asymp-equiv-mult)

using asymp-equiv-refl apply blast
using catalan-asymptotics apply blast

by simp
have f1 : ... = (λn. (−1)^n / (2 ∗ (sqrt pi ∗ n powr (3/2))))

12

by auto
have f2 : ... = (λn. 1 / (2 ∗ (sqrt pi)) ∗ ((−1)^n / (n powr (3/2)))) (is - = ?g)

by auto

have summable-g: summable ?g
proof (rule summable-mult)

have f1 : ∀n. (− (1 ::real)) ^ n / real n powr ((3 ::real) / (2 ::real)) =
(− (1 ::real)) ^ n ∗ real n powr (− ((3 ::real) / (2 ::real)))
using divide-powr-uminus by presburger

have f2 : summable (λn::nat. − ((− (1 ::real)) ^ n ∗ real (n + 1) powr (−
((3 ::real) / (2 ::real)))))

apply (rule summable-minus)
apply (rule summable-Leibniz ′)

apply (subst tendsto-neg-powr)
subgoal by simp

using filterlim-real-sequentially
apply (metis filterlim-add-const-nat-at-top filterlim-sequentially-iff-filterlim-real)

subgoal by simp
subgoal by simp

by (simp add: powr-mono2 ′)

have f3 : summable (λn::nat. ((− (1 ::real)) ^ (n + 1) ∗ real (n + 1) powr (−
((3 ::real) / (2 ::real)))))

using f2 by simp

show summable (λn::nat. (− (1 ::real)) ^ n / real n powr ((3 ::real) / (2 ::real)))
apply (simp only: f1)
apply (subst summable-Suc-iff [symmetric])
using f3 Suc-eq-plus1 by presburger

qed

have summable-norm-g: summable (λn. norm(?g n))
proof −

have f0 : ∀n. norm(?g n) = ((1 ::real) / ((2 ::real) ∗ sqrt pi) ∗ (1 / real n powr
((3 ::real) / (2 ::real))))

by auto
show ?thesis

apply (simp only: f0)
apply (rule summable-mult)
apply (subst summable-real-powr-iff ′)
by simp

qed

show ?thesis
apply (subst summable-Suc-iff [symmetric])
apply (subst summable-comparison-test-bigo[where g = ?g])

apply (simp only: summable-norm-g)
apply (rule asymp-equiv-imp-bigo)

13

using f0 f1 f2 apply metis
by simp

qed

lemma gbinomial-1-2-gchoose-sum-sqrt-2 :
shows (

∑
n. (((1 ::real) / (2 ::real) gchoose n))) = sqrt 2 (is (

∑
n. ?f-1 n) = -)

proof −
let ?f = λx. (

∑
n. ((((1 ::real) / (2 ::real) gchoose n)) ∗ x ^ n))

— Inside the disk: expansion gives sqrt(1+x)
have eq-inside:

∧
x. abs x < 1 =⇒ ?f (x) = sqrt (1+x)

using sqrt-series sums-unique by force

have (?f −−−→ sqrt (2)) (at-left (1))
proof −

have ((λx. sqrt (1+x)) −−−→ sqrt 2) (at-left (1))
proof (intro tendsto-intros)

have ((+) (1 ::real) −−−→ 1 + 1) (at-left 1)
using tendsto-add-const-iff by fastforce

then show ((+) (1 ::real) −−−→ 2) (at-left 1)
by simp

qed
moreover have eventually (λx. ?f (x) = sqrt(1+x)) (at-left (1))

apply(subst eventually-at)
apply (rule exI [of - 0 .1])
apply (auto simp: dist-real-def)[1]
using eq-inside by force

ultimately show ?thesis
by (simp add: filterlim-cong)

qed
hence lim: (?f −−−→ sqrt 2) (at-left (1)) by simp

have lim-by-abel-from-left: (?f −−−→ (
∑

n. ?f-1 n)) (at-left (1))
apply (subst Abel-limit-theorem)

using summable-1-2-gchoose apply simp
apply (subst conv-radius-gchoose)
apply (smt (verit, best) Nats-cases field-sum-of-halves nat-less-real-le of-nat-0

of-nat-0-less-iff)
by auto

from lim lim-by-abel-from-left show ?thesis
apply (subst tendsto-unique[where f = ?f and a = (

∑
n. ?f-1 n)

and F = (at-left (1)) and b = sqrt 2])
using trivial-limit-at-left-real apply blast

apply blast
apply blast

by simp
qed

14

2.2 Alternating series
lemma gbinomial-ratio-limit ′:

fixes a :: ′a :: real-normed-field
assumes a /∈ �
shows (λn. ((a gchoose n) ∗ (−1) ^ n) / ((a gchoose Suc n) ∗ (−1) ^ (Suc n)))
−−−−→ 1
proof −

have (λn. ((a gchoose n) ∗ (−1) ^ n) / ((a gchoose Suc n) ∗ (−1) ^ (Suc n)))
= (λn. − ((a gchoose n) / (a gchoose Suc n)))

by auto
then show ?thesis

using gbinomial-ratio-limit assms tendsto-minus-cancel-left by fastforce
qed

lemma conv-radius-gchoose-alternating:
fixes a :: ′a :: {real-normed-field,banach}
assumes a /∈ �
shows conv-radius (λn::nat. (a gchoose n) ∗ (−1) ^ n) = (1 ::ereal)

proof −
from tendsto-norm[OF gbinomial-ratio-limit ′]
have conv-radius (λn::nat. (a gchoose n) ∗ (−1) ^ n) = 1

apply (intro conv-radius-ratio-limit-nonzero[of - 1])
subgoal by (simp add: norm-divide)

subgoal by (simp add: norm-divide)
apply (simp add: norm-divide[symmetric])
using assms by blast

then show ?thesis by blast
qed

lemma summable-1-2-gchoose-alternating:
summable (λn::nat. (1 / 2 gchoose n) ∗ (−1) ^ n :: real) (is summable ?f)

proof −
have f0 : (λn. ((1/2) gchoose (Suc n))) ∼[at-top]

(λn. (((−1)^n/2) ∗ (1/4^n)) ∗ (4^n / ((sqrt pi ∗ n powr (3/2)))))
apply (simp only: gbinomial-1-2-catalan ′)
apply (subst asymp-equiv-mult)

using asymp-equiv-refl apply blast
using catalan-asymptotics apply blast

by simp
have f1 : ... = (λn. (−1)^n / (2 ∗ (sqrt pi ∗ n powr (3/2))))

by auto
have f2 : ... = (λn. 1 / (2 ∗ (sqrt pi)) ∗ ((−1)^n / (n powr (3/2)))) (is - = ?g)

by auto
have f3 : (λn. ?g (n) ∗ (− (1 ::real)) ^ (Suc n)) =

(λn. (−1 / (2 ∗ (sqrt pi))) ∗ (1 / (n powr (3/2)))) (is - = ?g1)
by auto

have f4 : (λn. ?f (Suc n)) ∼[at-top] (λn. ?g (n) ∗ (− (1 ::real)) ^ (Suc n)) (is -
∼[at-top] ?g1)

apply (subst asymp-equiv-mult)

15

using f0 f1 f2 subgoal by auto
using asymp-equiv-refl apply blast

by simp

have summable-g: summable ?g
proof (rule summable-mult)

have f1 : ∀n. (− (1 ::real)) ^ n / real n powr ((3 ::real) / (2 ::real)) =
(− (1 ::real)) ^ n ∗ real n powr (− ((3 ::real) / (2 ::real)))
using divide-powr-uminus by presburger

have f2 : summable (λn::nat. − ((− (1 ::real)) ^ n ∗ real (n + 1) powr (−
((3 ::real) / (2 ::real)))))

apply (rule summable-minus)
apply (rule summable-Leibniz ′)

apply (subst tendsto-neg-powr)
subgoal by simp

using filterlim-real-sequentially
apply (metis filterlim-add-const-nat-at-top filterlim-sequentially-iff-filterlim-real)

subgoal by simp
subgoal by simp

by (simp add: powr-mono2 ′)

have f3 : summable (λn::nat. ((− (1 ::real)) ^ (n + 1) ∗ real (n + 1) powr (−
((3 ::real) / (2 ::real)))))

using f2 by simp

show summable (λn::nat. (− (1 ::real)) ^ n / real n powr ((3 ::real) / (2 ::real)))
apply (simp only: f1)
apply (subst summable-Suc-iff [symmetric])
using f3 Suc-eq-plus1 by presburger

qed

have summable-g1 : summable ?g1
apply (simp only: f3)
apply (rule summable-mult)
apply (subgoal-tac (λn::nat. (1 ::real) / real n powr ((3 ::real) / (2 ::real))) =

(λn::nat. real n powr (− (3 ::real) / (2 ::real))))
subgoal by (simp add: summable-real-powr-iff)
by (simp add: inverse-eq-divide powr-minus)

have summable-norm-g1 : summable (λn. norm (?g1 n))
apply (simp add: f3)
apply (subgoal-tac (λn::nat. (1 ::real) / ((2 ::real) ∗ sqrt pi ∗ real n powr (3 /

2))) =
(λn::nat. (1 ::real) / ((2 ::real) ∗ sqrt pi) ∗ real n powr (−3 / 2)))

subgoal by (simp add: summable-real-powr-iff)
by (simp add: inverse-eq-divide powr-minus)

show ?thesis

16

apply (subst summable-Suc-iff [symmetric])
apply (subst summable-comparison-test-bigo[where g = ?g1])

using summable-norm-g1 apply blast
apply (rule asymp-equiv-imp-bigo)
using f4 apply blast

by simp
qed

lemma gbinomial-1-2-gchoose-alternating-sum-0 :
shows (

∑
n. ((1/2 gchoose n) ∗ (− (1 ::real)) ^ n)) = 0 (is (

∑
n. ?f-1 n) = 0)

proof −
let ?f = λx. (

∑
n. ((((1 ::real) / (2 ::real) gchoose n) ∗ (−1) ^ n) ∗ x ^ n))

have f0 : ∀ x. ?f x = (
∑

n. ((((1 ::real) / (2 ::real) gchoose n) ∗ (−x) ^ n)))
by (metis (no-types, lifting) more-arith-simps(11) power-minus suminf-cong)

— Inside the disk: expansion gives sqrt(1+x)
have eq-inside:

∧
x. abs x < 1 =⇒ ?f (−x) = sqrt (1−(−x))

apply (simp only: f0)
using sqrt-series sums-unique by force

have ((λx. ?f (−x)) −−−→ sqrt (1 + (−1))) (at-right (−1))
proof −

have ((λx. sqrt (1+x)) −−−→ sqrt 0) (at-right (−1))
apply (intro tendsto-intros)
using filterlim-at-right-to-0 by fastforce

moreover have eventually (λx. ?f (−x) = sqrt(1+x)) (at-right (−1))
apply (subst eventually-at)
apply (rule exI [of - 0 .1])
apply (auto simp: dist-real-def)[1]
using eq-inside by force

ultimately show ?thesis
by (simp add: filterlim-cong)

qed
hence lim: ((λx. ?f (−x)) −−−→ 0) (at-right (−1)) by simp

have lim-by-abel-from-right: ((λx. ?f (−x)) −−−→ (
∑

n. ?f-1 n)) (at-right (−1))
apply (subst Abel-limit-theorem ′)

subgoal using summable-1-2-gchoose-alternating by simp
apply (subst conv-radius-gchoose-alternating[where a = 1/2 ::real])

apply (smt (verit, ccfv-threshold) Multiseries-Expansion.intyness-simps(1)
Nats-cases One-nat-def

Rings.ring-distribs(2) divide-inverse inverse-eq-divide nat-less-real-le
nonzero-mult-div-cancel-left of-nat-0-less-iff one-power2 plus-1-eq-Suc times-divide-eq-right)

by auto

from lim lim-by-abel-from-right show ?thesis
apply (subst tendsto-unique[where f = (λx. ?f (−x)) and a = (

∑
n. ?f-1 n)

and F = (at-right (−1)) and b = 0])

17

using trivial-limit-at-right-real apply blast
apply blast
apply blast
by simp

qed

2.3 Binomial sqrt series with the boundary cases

This lemma incorporates the boundary values where x = 1 and x = −1.
theorem binomial-sqrt-series ′:

assumes |x| ≤ (1 :: real)
shows suminf (λn. ((1/2) gchoose n) ∗ x ^ n) = sqrt (1 + x)

proof (cases |x| < 1)
case True
then show ?thesis using binomial-sqrt-series by presburger

next
case abs-x-1 : False
then show ?thesis
proof (cases x = 1)

case True
then show ?thesis

by (simp add: gbinomial-1-2-gchoose-sum-sqrt-2)
next

case False
then have x = −1

using abs-x-1 assms by linarith
then show ?thesis by (simp add: gbinomial-1-2-gchoose-alternating-sum-0)

qed
qed

end

References

[1] Proof of Abel’s limit theorem — planetmath.org. https://planetmath.
org/proofofabelslimittheorem. [Accessed 11-11-2025].

[2] F. Holland. Abel’s limit theorem, its converse, and multiplication for-
mulae for Γ(x). Irish Math. Soc. Bull., 0089:57–64, 2022.

[3] Wikipedia contributors. Abel’s theorem. [Accessed 11-11-2025]. URL:
https://en.wikipedia.org/wiki/Abel%27s_theorem.

18

https://planetmath.org/proofofabelslimittheorem
https://planetmath.org/proofofabelslimittheorem
https://en.wikipedia.org/wiki/Abel%27s_theorem

	Abel's limit theorem on real power series
	Example application: boundary cases of binomial theorem
	Binomial series
	Alternating series
	Binomial sqrt series with the boundary cases

