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Chapter 1

Prologue

Verifying more examples of probabilistic algorithms will inevitably
necessitate more formalization; in particular we already can see
that a theory of expectation will be required to prove the cor-
rectness of probabilistic quicksort. If we can continue our policy
of formalizing standard theorems of mathematics to aid verifica-
tions, then this will provide long-term benefits to many users of
the HOL theorem prover.

This quote from the Future Work section of Joe Hurd’s PhD thesis “Formal
Verification of Probabilistic Algorithms” ([6] p. 131) served as a starting
point for the following work. A theory of expectation is nothing but a theory
of integration in its probability theoretic underpinnings. And though the
proof of correctness for probabilistic quicksort might not need integration,
an average runtime analysis certainly will.

As indicated in the very beginning, integration is needed in some way to
talk about expectation in probability. The notion that is addressed here is
a kind of average value of a random variable with respect to a (probability)
measure. The concept of a measure lies at the heart of Lebesgue integration.
A measure is simply a function satisfying a few sanity properties that maps
sets to real numbers. Because the definition does not employ such concrete
entities as intervals, it generalizes easily to functions that do not have the
real numbers as their domain. In particular, the notion of measure is very
natural in the field of probability theory, where a probability measure —
nothing but a measure P with P (Ω) = 1 — gives the probability of an event
— a measurable subset of Ω.

This Ω might, for example, be the set of all infinite sequences of boolean
values, as in Hurd’s thesis[6]; our integral is then just a tool that extends
this work in the sense depicted at the very beginning of this introduction.

We begin by declaring some preliminary notions, including elementary mea-
sure theory and monotone convergence. This leads into measurable real-
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CHAPTER 1. PROLOGUE 3

valued functions, also known as random variables. A sufficient body of
functions is shown to belong to this class. The central chapter is about inte-
gration proper. We build the integral for increasingly complex functions and
prove essential properties, discovering the connection with measurability in
the end.



Chapter 2

Measurable Functions

In this chapter, the focus is on the kind of functions to be integrated. As we
will see later on, measurability is a good characterization for these functions.
Moreover, the language of measure theory as well as the notion of monotone
convergence is used frequently in the definition of the integral. So we begin
by formalizing these necessary tools.

2.1 Preliminaries

2.1.1 Sigma Algebras

theory Sigma-Algebra imports Main begin

The theory command commences a formal document and enumerates the
theories it depends on. With the Main theory, a standard selection of useful
HOL theories excluding the real numbers is loaded. This theory includes
and builds upon a tiny theory of the same name by Markus Wenzel. This
theory as well as Measure in 2.1.3 is heavily influenced by Joe Hurd’s thesis
[6] and has been designed to keep the terminology as consistent as possible
with that work.

Sigma algebras are an elementary concept in measure theory. To measure
— that is to integrate — functions, we first have to measure sets. Un-
fortunately, when dealing with a large universe, it is often not possible to
consistently assign a measure to every subset. Therefore it is necessary to
define the set of measurable subsets of the universe. A sigma algebra is such
a set that has three very natural and desirable properties.

definition
sigma-algebra:: ′a set set ⇒ bool where
sigma-algebra A ←→
{} ∈ A ∧ (∀ a. a ∈ A −→ −a ∈ A) ∧
(∀ a. (∀ i ::nat . a i ∈ A) −→ (

⋃
i . a i) ∈ A)
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THEORY Sigma-Algebra 5

The definition command defines new constants, which are just named func-
tions in HOL. Mind that the third condition expresses the fact that the union
of countably many sets in A is again a set in A without explicitly defining
the notion of countability.

Sigma algebras can naturally be created as the closure of any set of sets with
regard to the properties just postulated. Markus Wenzel wrote the following
inductive definition of the sigma operator.

inductive-set
sigma :: ′a set set ⇒ ′a set set
for A :: ′a set set
where

basic: a ∈ A =⇒ a ∈ sigma A
| empty : {} ∈ sigma A
| complement : a ∈ sigma A =⇒ −a ∈ sigma A
| Union: (

∧
i ::nat . a i ∈ sigma A) =⇒ (

⋃
i . a i) ∈ sigma A

He also proved the following basic facts. The easy proofs are omitted.

theorem sigma-UNIV : UNIV ∈ sigma A〈proof 〉

theorem sigma-Inter :
(
∧

i ::nat . a i ∈ sigma A) =⇒ (
⋂

i . a i) ∈ sigma A〈proof 〉

It is trivial to show the connection between our first definitions. We use the
opportunity to introduce the proof syntax.

theorem assumes sa: sigma-algebra A
— Named premises are introduced like this.

shows sigma-sigma-algebra: sigma A = A
〈proof 〉

These two steps finish their respective proofs, checking that all subgoals
have been proven.

To end this theory we prove a special case of the sigma-Inter theorem above.
It seems trivial that the fact holds for two sets as well as for countably many.
We get a first taste of the cost of formal reasoning here, however. The idea
must be made precise by exhibiting a concrete sequence of sets.

primrec trivial-series:: ′a set ⇒ ′a set ⇒ (nat ⇒ ′a set)
where

trivial-series a b 0 = a
| trivial-series a b (Suc n) = b

Using primrec, primitive recursive functions over inductively defined data
types — the natural numbers in this case — may be constructed.

theorem assumes s: sigma-algebra A and a: a ∈ A and b: b ∈ A
shows sigma-algebra-inter : a ∩ b ∈ A
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〈proof 〉

Of course, a like theorem holds for union instead of intersection. But as we
will not need it in what follows, the theory is finished with the following
easy properties instead. Note that the former is a kind of generalization of
the last result and could be used to shorten its proof. Unfortunately, this
one was needed — and therefore found — only late in the development.

theorem sigma-INTER:
assumes a:(

∧
i ::nat . i ∈ S =⇒ a i ∈ sigma A)

shows (
⋂

i∈S . a i) ∈ sigma A〈proof 〉

lemma assumes s: sigma-algebra a shows sigma-algebra-UNIV : UNIV ∈ a〈proof 〉

end

2.1.2 Monotone convergence

theory MonConv
imports Complex-Main
begin

A sensible requirement for an integral operator is that it be “well-behaved”
with respect to limit functions. To become just a little more precise, it is
expected that the limit operator may be interchanged with the integral op-
erator under conditions that are as weak as possible. To this end, the notion
of monotone convergence is introduced and later applied in the definition of
the integral.

In fact, we distinguish three types of monotone convergence here: There
are converging sequences of real numbers, real functions and sets. Mono-
tone convergence could even be defined more generally for any type in the
axiomatic type class1 ord of ordered types like this.

mon-conv u f ≡ (∀n. u n ≤ u (Suc n)) ∧ isLub UNIV (range u) f

However, this employs the general concept of a least upper bound. For
the special types we have in mind, the more specific limit — respective
union — operators are available, combined with many theorems about their
properties. For the type of real- (or rather ordered-) valued functions, the
less-or-equal relation is defined pointwise.

(f ≤ g) = (∀ x . f x ≤ g x )

Now the foundations are laid for the definition of monotone convergence.
To express the similarity of the different types of convergence, a single over-
loaded operator is used.

consts

1For the concept of axiomatic type classes, see [7, 9]
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mon-conv :: (nat ⇒ ′a) ⇒ ′a::ord ⇒ bool (-↑- [60 ,61 ] 60 )

defs (overloaded)
real-mon-conv : x↑(y ::real) ≡ (∀n. x n ≤ x (Suc n)) ∧ x −−−−> y
realfun-mon-conv :
u↑(f :: ′a ⇒ real) ≡ (∀n. u n ≤ u (Suc n)) ∧ (∀w . (λn. u n w) −−−−> f w)
set-mon-conv : A↑(B :: ′a set) ≡ (∀n. A n ≤ A (Suc n)) ∧ B = (

⋃
n. A n)

theorem realfun-mon-conv-iff : (u↑f ) = (∀w . (λn. u n w)↑((f w)::real))
〈proof 〉

The long arrow signifies convergence of real sequences as defined in the
theory SEQ [5]. Monotone convergence for real functions is simply pointwise
monotone convergence.

Quite a few properties of these definitions will be necessary later, and they
are listed now, giving only few select proofs.

lemma assumes mon-conv : x↑(y ::real)
shows mon-conv-mon: (x i) ≤ (x (m+i))〈proof 〉

lemma limseq-shift-iff : (λm. x (m+i)) −−−−> y = x −−−−> y〈proof 〉

theorem assumes mon-conv : x↑(y ::real)
shows real-mon-conv-le: x i ≤ y
〈proof 〉

theorem assumes mon-conv : x↑(y ::( ′a ⇒ real))
shows realfun-mon-conv-le: x i ≤ y
〈proof 〉

lemma assumes mon-conv : x↑(y ::real)
and less: z < y
shows real-mon-conv-outgrow : ∃n. ∀m. n ≤ m −→ z < x m
〈proof 〉

theorem real-mon-conv-times:
assumes xy : x↑(y ::real) and nn: 0≤z
shows (λm. z∗x m)↑(z∗y)〈proof 〉

theorem realfun-mon-conv-times:
assumes xy : x↑(y :: ′a⇒real) and nn: 0≤z
shows (λm w . z∗x m w)↑(λw . z∗y w)〈proof 〉

theorem real-mon-conv-add :
assumes xy : x↑(y ::real) and ab: a↑(b::real)
shows (λm. x m + a m)↑(y + b)〈proof 〉

theorem realfun-mon-conv-add :
assumes xy : x↑(y :: ′a⇒real) and ab: a↑(b:: ′a ⇒ real)
shows (λm w . x m w + a m w)↑(λw . y w + b w)〈proof 〉
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theorem real-mon-conv-bound :
assumes mon:

∧
n. c n ≤ c (Suc n)

and bound :
∧

n. c n ≤ (x ::real)
shows ∃ l . c↑l ∧ l≤x
〈proof 〉

theorem real-mon-conv-dom:
assumes xy : x↑(y ::real) and mon:

∧
n. c n ≤ c (Suc n)

and dom: c ≤ x
shows ∃ l . c↑l ∧ l≤y
〈proof 〉
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theorem realfun-mon-conv-bound :
assumes mon:

∧
n. c n ≤ c (Suc n)

and bound :
∧

n. c n ≤ (x :: ′a ⇒ real)
shows ∃ l . c↑l ∧ l≤x 〈proof 〉

This brings the theory to an end. Notice how the definition of the limit of a
real sequence is visible in the proof to real-mon-conv-outgrow, a lemma that
will be used for a monotonicity proof of the integral of simple functions later
on.

〈proof 〉

end

2.1.3 Measure spaces

theory Measure
imports Sigma-Algebra MonConv
begin

Now we are already set for the central concept of measure. The following
definitions are translated as faithfully as possible from those in Joe Hurd’s
thesis [6].

definition
measurable:: ′a set set ⇒ ′b set set ⇒ ( ′a ⇒ ′b) set where
measurable F G = {f . ∀ g∈G . f −‘ g ∈ F}

So a function is called F -G-measurable if and only if the inverse image of
any set in G is in F . F and G are usually the sets of measurable sets, the
first component of a measure space2.

definition
measurable-sets:: ( ′a set set ∗ ( ′a set ⇒ real)) ⇒ ′a set set where
measurable-sets = fst

definition
measure:: ( ′a set set ∗ ( ′a set ⇒ real)) ⇒ ( ′a set ⇒ real) where
measure = snd

The other component is the measure itself. It is a function that assigns a
nonnegative real number to every measurable set and has the property of
being countably additive for disjoint sets.

definition
positive:: ( ′a set set ∗ ( ′a set ⇒ real)) ⇒ bool where

2In standard mathematical notation, the universe is first in a measure space triple, but
in our definitions, following Joe Hurd, it is always the whole type universe and therefore
omitted.
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positive M ←→ measure M {} = 0 ∧
(∀A. A∈ measurable-sets M −→ 0 ≤ measure M A)

definition
countably-additive:: ( ′a set set ∗ ( ′a set => real)) => bool where
countably-additive M ←→ (∀ f ::(nat => ′a set). range f ⊆ measurable-sets M
∧ (∀m n. m 6= n −→ f m ∩ f n = {}) ∧ (

⋃
i . f i) ∈ measurable-sets M

−→ (λn. measure M (f n)) sums measure M (
⋃

i . f i))

This last property deserves some comments. The conclusion is usually —
also in the aforementioned source — phrased as

measure M (
⋃

i . f i) = (
∑

n. measure M (f n)).

In our formal setting this is unsatisfactory, because the sum operator3, like
any HOL function, is total, although a series obviously need not converge.
It is defined using the ε operator, and its behavior is unspecified in the
diverging case. Hence, the above assertion would give no information about
the convergence of the series.

Furthermore, the definition contains redundancy. Assuming that the count-
able union of sets is measurable is unnecessary when the measurable sets
form a sigma algebra, which is postulated in the final definition4.

definition
measure-space:: ( ′a set set ∗ ( ′a set ⇒ real)) ⇒ bool where
measure-space M ←→ sigma-algebra (measurable-sets M ) ∧
positive M ∧ countably-additive M

Note that our definition is restricted to finite measure spaces — that is,
measure M UNIV < ∞— since the measure must be a real number for any
measurable set. In probability, this is naturally the case.

Two important theorems close this section. Both appear in Hurd’s work as
well, but are shown anyway, owing to their central role in measure theory.
The first one is a mighty tool for proving measurability. It states that for a
function mapping one sigma algebra into another, it is sufficient to be mea-
surable regarding only a generator of the target sigma algebra. Formalizing
the interesting proof out of Bauer’s textbook [1] is relatively straightforward
using rule induction.

theorem assumes sig : sigma-algebra a and meas: f ∈ measurable a b shows
measurable-lift : f ∈ measurable a (sigma b)
〈proof 〉

The case is different for the second theorem. It is only five lines in the book
(ibid.), but almost 200 in formal text. Precision still pays here, gaining a
detailed view of a technique that is often employed in measure theory —

3Which is merely syntactic sugar for the suminf functional from the Series theory [5].
4Joe Hurd inherited this practice from a very influential probability textbook [10]
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making a sequence of sets disjoint. Moreover, the necessity for the above-
mentioned change in the definition of countably additive was detected only
in the formalization of this proof.

To enable application of the additivity of measures, the following construc-
tion yields disjoint sets. We skip the justification of the lemmata for brevity.

primrec mkdisjoint :: (nat ⇒ ′a set) ⇒ (nat ⇒ ′a set)
where

mkdisjoint A 0 = A 0
| mkdisjoint A (Suc n) = A (Suc n) − A n

lemma mkdisjoint-un:
assumes up:

∧
n. A n ⊆ A (Suc n)

shows A n = (
⋃

i∈{..n}. mkdisjoint A i)〈proof 〉

lemma mkdisjoint-disj :
assumes up:

∧
n. A n ⊆ A (Suc n) and ne: m 6= n

shows mkdisjoint A m ∩ mkdisjoint A n = {}〈proof 〉

lemma mkdisjoint-mon-conv :
assumes mc: A↑B
shows (

⋃
i . mkdisjoint A i) = B〈proof 〉

Joe Hurd calls the following the Monotone Convergence Theorem, though in
mathematical literature this name is often reserved for a similar fact about
integrals that we will prove in 3.2.2, which depends on this one. The claim
made here is that the measures of monotonically convergent sets approach
the measure of their limit. A strengthened version would imply monotone
convergence of the measures, but is not needed in the development.

theorem measure-mon-conv :
assumes ms: measure-space M and
Ams:

∧
n. A n ∈ measurable-sets M and AB : A↑B

shows (λn. measure M (A n)) −−−−> measure M B
〈proof 〉〈proof 〉
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2.2 Real-valued random variables

theory RealRandVar
imports Measure ∼∼/src/HOL/Library/Countable
begin

While most of the above material was modeled after Hurd’s work (but still
proved independently), the original content basically starts here5. From
now on, we will specialize in functions that map into the real numbers and
are measurable with respect to the canonical sigma algebra on the reals,
the Borel sigma algebra. These functions will be called real-valued random
variables. The terminology is slightly imprecise, as random variables hint at
a probability space, which usually requires measure M UNIV = 1. Notwith-
standing, as we regard only finite measures (cf. 2.1.3), this condition can
easily be achieved by normalization. After all, the other standard name,
“measurable functions”, is even less precise.

A lot of the theory in this and the preceding section has also been formalized
within the Mizar project [3, 4]. The abstract of the second source hints that
it was also planned as a stepping stone for Lebesgue integration, though
further results in this line could not be found. The main difference lies in
the use of extended real numbers — the reals together with ±∞ — in those
documents. It is established practice in measure theory to allow infinite
values, but “(. . .) we felt that the complications that this generated (. . .)
more than canceled out the gain in uniformity (. . .), and that a simpler
theory resulted from sticking to the standard real numbers.” [6, p. 32f].
Hurd also advocates going directly to the hyper-reals, should the need for
infinite measures arise. I agree, nevertheless sticking to his example for the
reasons mentioned in the prologue.

definition
Borelsets:: real set set (IB) where
IB = sigma {S . ∃ u. S={..u}}

definition

rv :: ( ′a set set ∗ ( ′a set ⇒ real)) ⇒ ( ′a ⇒ real) set where
rv M = {f . measure-space M ∧ f ∈ measurable (measurable-sets M ) IB}

As explained in the first paragraph, the preceding definitions6 determine
the rest of this section. There are many ways to define the Borel sets. For
example, taking into account only rationals for u would also have worked

5There are two main reasons why the above has not been imported using Sebastian
Skalberg’s import tool [8]. Firstly, there are inconveniences caused by different conventions
in HOL, meaning predicates instead of sets foremost, that make the consistent use of such
basic definitions impractical. What is more, the import tool simply was not available at
the time these theories were written.

6The notation {..u} signifies the interval from negative infinity to u included.
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out above, but we can take the reals to simplify things. The smallest sigma
algebra containing all the open (or closed) sets is another alternative; the
multitude of possibilities testifies to the relevance of the concept.

The latter path leads the way to the fact that any continuous function is
measurable. Generalization for IRn brings another unified way to prove all
the measurability theorems in this theory plus, for instance, measurability
of the trigonometric and exponential functions. This approach is detailed
in another influential textbook by Billingsley [2]. It requires some concepts
of topologic spaces, which made the following elementary course, based on
Bauer’s excellent book [1], seem more feasible.

Two more definitions go next. The image measure, law, or distribution —
the last term being specific to probability — of a measure with respect to
a measurable function is calculated as the measure of the inverse image of
a set. Characteristic functions will be frequently needed in the rest of the
development.

definition
distribution::
( ′a set set ∗ ( ′a set ⇒ real)) ⇒ ( ′a ⇒ real) ⇒ (real set ⇒ real) (law) where
f ∈ rv M =⇒ law M f ≡ (measure M ) ◦ (vimage f )

definition
characteristic-function:: ′a set ⇒ ( ′a ⇒ real) (χ -) where
χ A x ≡ if x ∈ A then 1 else 0

lemma char-empty : χ {} = (λt . 0 )
〈proof 〉

Now that random variables are defined, we aim to show that a broad class
of functions belongs to them. For a constant function this is easy, as there
are only two possible preimages.

lemma assumes sigma: sigma-algebra S
shows const-measurable: (λx . (c::real)) ∈ measurable S X
〈proof 〉

theorem assumes ms: measure-space M
shows const-rv : (λx . c) ∈ rv M 〈proof 〉

Characteristic functions produce four cases already, so the details are glossed
over.

lemma assumes a: a ∈ S and sigma: sigma-algebra S shows
char-measurable : χ a ∈ measurable S x 〈proof 〉

theorem assumes ms: measure-space M and A: A ∈ measurable-sets M
shows char-rv : χ A ∈ rv M 〈proof 〉

For more intricate functions, the following application of the measurability
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lifting theorem from 2.1.3 gives a useful characterization.

theorem assumes ms: measure-space M shows
rv-le-iff : (f ∈ rv M ) = (∀ a. {w . f w ≤ a} ∈ measurable-sets M )
〈proof 〉

The next four lemmata allow for a ring deduction that helps establish this
fact for all of the signs <, > and ≥ as well.

lemma assumes sigma: sigma-algebra A and le: ∀ a. {w . f w ≤ a} ∈ A
shows le-less: ∀ a. {w . f w < (a::real)} ∈ A
〈proof 〉

lemma assumes sigma: sigma-algebra A and less: ∀ a. {w . f w < a} ∈ A
shows less-ge: ∀ a. {w . (a::real) ≤ f w} ∈ A
〈proof 〉

lemma assumes sigma: sigma-algebra A and ge: ∀ a. {w . a ≤ f w} ∈ A
shows ge-gr : ∀ a. {w . (a::real) < f w} ∈ A〈proof 〉

lemma assumes sigma: sigma-algebra A and gr : ∀ a. {w . a < f w} ∈ A
shows gr-le: ∀ a. {w . f w ≤ (a::real)} ∈ A〈proof 〉

theorem assumes ms: measure-space M shows
rv-ge-iff : (f ∈ rv M ) = (∀ a. {w . a ≤ f w} ∈ measurable-sets M )
〈proof 〉

theorem assumes ms: measure-space M shows
rv-gr-iff : (f ∈ rv M ) = (∀ a. {w . a < f w} ∈ measurable-sets M )〈proof 〉

theorem assumes ms: measure-space M shows
rv-less-iff : (f ∈ rv M ) = (∀ a. {w . f w < a} ∈ measurable-sets M )〈proof 〉

As a first application we show that addition and multiplication with con-
stants preserve measurability. This is a precursor to the more general ad-
dition and multiplication theorems later on. You can see that quite a few
properties of the real numbers are employed.

lemma assumes g : g ∈ rv M
shows affine-rv : (λx . (a::real) + (g x ) ∗ b) ∈ rv M
〈proof 〉

For the general case of addition, we need one more set to be measurable,
namely {w . f w ≤ g w}. This follows from a like statement for <. A dense
and countable subset of the reals is needed to establish it.

Of course, the rationals come to mind. They were not available in Isabelle/HOL7,
so I built a theory with the necessary properties on my own. [Meanwhile
Isabelle has proper rationals and SR’s development of the rationals has been
moved to and merged with Isabelle’s rationals.

7At least not as a subset of the reals, to the definition of which a type of positive
rational numbers contributed [5].
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lemma assumes f : f ∈ rv M and g : g ∈ rv M
shows rv-less-rv-measurable: {w . f w < g w} ∈ measurable-sets M
〈proof 〉

lemma assumes f : f ∈ rv M and g : g ∈ rv M
shows rv-le-rv-measurable: {w . f w ≤ g w} ∈ measurable-sets M (is ?a ∈ ?M )
〈proof 〉

lemma assumes f : f ∈ rv M and g : g ∈ rv M
shows f-eq-g-measurable: {w . f w = g w} ∈ measurable-sets M 〈proof 〉

lemma assumes f : f ∈ rv M and g : g ∈ rv M
shows f-noteq-g-measurable: {w . f w 6= g w} ∈ measurable-sets M 〈proof 〉

With these tools, a short proof for the addition theorem is possible.

theorem assumes f : f ∈ rv M and g : g ∈ rv M
shows rv-plus-rv : (λw . f w + g w) ∈ rv M
〈proof 〉

To show preservation of measurability by multiplication, it is expressed by
addition and squaring. This requires a few technical lemmata including the
one stating measurability for squares, the proof of which is skipped.

lemma pow2-le-abs: (a2 ≤ b2) = (|a| ≤ |b::real |)〈proof 〉
lemma assumes f : f ∈ rv M

shows rv-square: (λw . (f w)2) ∈ rv M 〈proof 〉
lemma realpow-two-binomial-iff : (f +g ::real)2 = f 2 + 2∗(f ∗g) + g2

〈proof 〉
lemma times-iff-sum-squares: f ∗g = (f +g)2/4 − (f−g)2/(4 ::real)〈proof 〉

theorem assumes f : f ∈ rv M and g : g ∈ rv M
shows rv-times-rv : (λw . f w ∗ g w) ∈ rv M
〈proof 〉

The case of substraction is an easy consequence of rv-plus-rv and rv-times-rv.

theorem rv-minus-rv :
assumes f : f ∈ rv M and g : g ∈ rv M
shows (λt . f t − g t) ∈ rv M 〈proof 〉

Measurability for limit functions of monotone convergent series is also sur-
prisingly straightforward.

theorem assumes u:
∧

n. u n ∈ rv M and mon-conv : u↑f
shows mon-conv-rv : f ∈ rv M
〈proof 〉

Before we end this chapter to start the formalization of the integral proper,
there is one more concept missing: The positive and negative part of a
function. Their definition is quite intuitive, and some useful properties are
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given right away, including the fact that they are random variables, provided
that their argument functions are measurable.

definition
nonnegative:: ( ′a ⇒ ( ′b::{ord ,zero})) ⇒ bool where
nonnegative f ←→ (∀ x . 0 ≤ f x )

definition
positive-part :: ( ′a ⇒ ( ′b::{ord ,zero})) ⇒ ( ′a ⇒ ′b) (pp) where
pp f x = (if 0≤f (x ) then f x else 0 )

definition
negative-part :: ( ′a ⇒ ( ′b::{ord ,zero,uminus,minus})) ⇒ ( ′a ⇒ ′b) (np) where
np f x = (if 0≤f (x ) then 0 else −f (x ))

lemma f-plus-minus: ((f x )::real) = pp f x − np f x
〈proof 〉

lemma f-plus-minus2 : (f :: ′a ⇒ real) = (λt . pp f t − np f t)
〈proof 〉

lemma f-abs-plus-minus: (|f x |::real) = pp f x + np f x
〈proof 〉

lemma nn-pp-np: assumes nonnegative f
shows pp f = f and np f = (λt . 0 ) 〈proof 〉

lemma pos-pp-np-help:
∧

x . 0≤f x =⇒ pp f x = f x ∧ np f x = 0
〈proof 〉

lemma real-neg-pp-np-help:
∧

x . f x ≤ (0 ::real) =⇒ np f x = −f x ∧ pp f x =
0 〈proof 〉
lemma real-neg-pp-np: assumes f ≤ (λt . (0 ::real))
shows np f = (λt . −f t) and pp f = (λt . 0 ) 〈proof 〉

lemma assumes a: 0≤(a::real)
shows real-pp-np-pos-times:
pp (λt . a∗f t) = (λt . a∗pp f t) ∧ np (λt . a∗f t) = (λt . a∗np f t)〈proof 〉

lemma assumes a: (a::real)≤0
shows real-pp-np-neg-times:
pp (λt . a∗f t) = (λt . −a∗np f t) ∧ np (λt . a∗f t) = (λt . −a∗pp f t)〈proof 〉

lemma pp-np-rv :
assumes f : f ∈ rv M
shows pp f ∈ rv M and np f ∈ rv M
〈proof 〉

theorem pp-np-rv-iff : (f :: ′a ⇒ real) ∈ rv M = (pp f ∈ rv M ∧ np f ∈ rv
M )〈proof 〉
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This completes the chapter about measurable functions. As we will see in
the next one, measurability is the prime condition on Lebesgue integrable
functions; and the theorems and lemmata established here suffice — at least
in principle — to show it holds for any function that is to be integrated
there.

end



Chapter 3

Integration

The chapter at hand assumes a central position in the present paper. The
Lebesgue integral is defined and its characteristics are shown in 3.2. To
illustrate the problems arising in doing so, we first look at implementation
alternatives that did not work out.

3.1 Two approaches that failed

Defining Lebesgue integration can be quite involved, judging by the process
in 3.2 that imitates Bauer’s way [1]. So it is quite tempting to try cutting
a corner. The following two alternative approaches back up my experience
that this almost never pays in formalization. The theory that seems most
complex at first sight is often the one that is closest to formal reasoning and
deliberately avoids “hand-waving”.

3.1.1 A closed expression

In contrast, Billingsley’s definition [2, p. 172] is strikingly short. For non-
negative measurable functions f :∫

fdµ = sup
∑

i [inf ω∈Ai
f(w)]µ(Ai).

The supremum here extends over all finite decompositions {Ai}
of Ω into F-sets.1

Like the definition, the proofs of the essential properties are also rather
short, about three pages in the textbook for almost all the theorems in
3.2; and a proof of uniqueness is obsolete for a closed expression like this.
Therefore, I found this approach quite tempting. It turns out, however,

1The F-sets are just the measurable sets of a measure space.

18
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that it is unfortunately not well suited for formalization, at least with the
background we use.

A complication shared by all possible styles of definition is the lack of infinite
values in our theory, combined with the lack of partial functions in HOL.
Like the sum operator in 2.1.3, the integral has to be defined indirectly. The
classical way to do this employs predicates, invoking ε to choose the value
that satisfies the condition:∫

f dM ≡ (ε i . is-integral M f i)

To sensibly apply this principle, the predicate has to be ε-free to supply
the information if the integral is defined or not. Now the above definition
contains up to three additional ε when formalized naively in HOL, namely
in the supremum, infimum and sum operators. The sum is over a finite set,
so it can be replaced by a total function. For nonnegative functions, the
infimum can also be shown to exist everywhere, but, like the supremum,
must itself be replaced by a predicate.

Also note that predicates require a proof of uniqueness, thus losing the
prime advantage of a closed formula anyway. In this case, uniqueness can
be reduced to uniqueness of the supremum/infimum. The problem is that
neither suprema nor infima come predefined in Isabelle/Isar as of yet. It is
an easy task to make up for this — and I did — but a much harder one to
establish all the properties needed for reasoning with the defined entities.

A lot of such reasoning is necessary to deduce from the above definition (or
a formal version of it, as just outlined) the basic behavior of integration,
which includes additivity, monotonicity and especially the integral of simple
functions. It turns out that the brevity of the proofs in the textbook stems
from a severely informal style that assumes ample background knowledge.
Formalizing all this knowledge started to become overwhelming when the
idea of a contrarian approach emerged.

3.1.2 A one-step inductive definition

This idea was sparked by the following note: “(. . . ) the integral is uniquely
determined by certain simple properties it is natural to require of it” [2,
p. 175]. Billingsley goes on discussing exactly those properties that are so
hard to derive from his definition. So why not simply define integration using
these properties? That is the gist of an inductive set definition, like the one
we have seen in 2.1.1. This time a functional operator is to be defined, but
it can be represented as a set of pairs, where the first component is the
function and the second its integral. To cut a long story short, here is the
definition.

inductive-set
integral-set :: ( ′a set set ∗ ( ′a set ⇒ real)) ⇒ (( ′a ⇒ real) ∗ real) set
for M :: ′a set set ∗ ( ′a set ⇒ real)
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where
char : [[f = χ A; A ∈ measurable-sets M ]] =⇒ (f ,measure M A) ∈ integral-set M
| add : [[f = (λw . g w + h w); (g ,x ) ∈ integral-set M ; (h,y) ∈ integral-set M ]]

=⇒ (f ,(x + y)) ∈ integral-set M
| times: [[f = (λw . a∗g w); (g ,x ) ∈ integral-set M ]] =⇒ (f ,a∗x ) ∈ integral-set M
| mon-conv : [[u↑f ;

∧
n. (u n, x n) ∈ integral-set M ; x↑y ]]

=⇒ (f ,y) ∈ integral-set M

The technique is also encountered in the Finite-Set theory from the Isabelle
library. It is used there to define the setsum function, which calculates a
sum indexed over a finite set and is employed in 3.2. The definition here is
much more intricate though.

An obvious advantage of this approach is that almost all important proper-
ties are gained without effort. The introduction rule mon-conv corresponds
to what is known as the Monotone Convergence Theorem in scientific lit-
erature; negative functions are also provided for via the times rule. To be
precise, there is exactly one important theorem missing — uniqueness. That
is, every function appears in at most one pair.

From uniqueness together with the introduction rules, all the other state-
ments about integration, monotonicity for example, could be derived. On
the other hand, monotonicity implies uniqueness. Much to my regret, none
of these two could be proven. The proof would basically amount to a double
induction to show that an integral gained via one rule is the same when
derived by another. A lot of effort was spent trying to strengthen the induc-
tion hypothesis or reduce the goal to a simpler case. All of this was in vain
though, and it seems that the hypothesis would have to be strengthened as
far as to include the concept of integration in the first place, which in a way
defeats the advantages of the approach.

3.2 The three-step approach

theory Integral
imports RealRandVar
begin

Having learnt from my failures, we take the safe and clean way of Heinz
Bauer [1]. It proceeds as outlined in the introduction. In three steps, we fix
the integral for elementary (“step-”)functions, for limits of these, and finally
for differences between such limits.

3.2.1 Simple functions

A simple function is a finite sum of characteristic functions, each multiplied
with a nonnegative constant. These functions must be parametrized by
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measurable sets. Note that to check this condition, a tuple consisting of a
set of measurable sets and a measure is required as the integral operator’s
second argument, whereas the measure only is given in informal notation.
Usually the tuple will be a measure space, though it is not required so by
the definition at this point.

It is most natural to declare the value of the integral in this elementary case
by simply replacing the characteristic functions with the measures of their
respective sets. Uniqueness remains to be shown, for a function may have
infinitely many decompositions and these might give rise to more than one
integral value. This is why we construct a simple function integral set for
any function and measurable sets/measure pair by means of an inductive
set definition containing but one introduction rule.

inductive-set
sfis:: ( ′a ⇒ real) ⇒ ( ′a set set ∗ ( ′a set ⇒ real)) ⇒ real set
for f :: ′a ⇒ real and M :: ′a set set ∗ ( ′a set ⇒ real)
where
base: [[f = (λt .

∑
i∈(S ::nat set). x i ∗ χ (A i) t);

∀ i ∈ S . A i ∈ measurable-sets M ; nonnegative x ; finite S ;
∀ i∈S . ∀ j∈S . i 6= j −→ A i ∩ A j = {}; (

⋃
i∈S . A i) = UNIV ]]

=⇒ (
∑

i∈S . x i ∗ measure M (A i)) ∈ sfis f M

As you can see we require two extra conditions, and they amount to the sets
being a partition of the universe. We say that a function is in normal form if
it is represented this way. Normal forms are only needed to show additivity
and monotonicity of simple function integral sets. These theorems can then
be used in turn to get rid of the normality condition.

More precisely, normal forms play a central role in the sfis-present lemma.
For two simple functions with different underlying partitions it states the
existence of a common finer-grained partition that can be used to represent
the functions uniformly. The proof is remarkably lengthy, another case
where informal reasoning is more intricate than it seems. The reason it is
included anyway, with the exception of the two following lemmata, is that
it gives insight into the arising complication and its formal solution.

The problem is in the use of informal sum notation, which easily permits
for a change in index sets, allowing for a pair of indices. This change has to
be rectified in formal reasoning. Luckily, the task is eased by an injective
function from N2 into N, which was developed for the rationals mentioned
in 2.2. It might have been still easier if index sets were polymorphic in our
integral definition, permitting pairs to be formed when necessary, but the
logic doesn’t allow for this.

lemma assumes un: (
⋃

i∈R. B i) = UNIV and fin: finite R
and dis: ∀ j1∈R. ∀ j2∈R. j1 6= j2 −→ (B j1 ) ∩ (B j2 ) = {}
shows char-split : χ A t = (

∑
j∈R. χ (A ∩ B j ) t)〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉lemma

assumes measure-space M and a ∈ sfis f M and b ∈ sfis g M
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shows sfis-present : ∃ z1 z2 C K .
f = (λt .

∑
i∈(K ::nat set). z1 i ∗ χ (C i) t) ∧ g = (λt .

∑
i∈K . z2 i ∗ χ (C i)

t)
∧ a = (

∑
i∈K . z1 i ∗ measure M (C i)) ∧ b = (

∑
i∈K . z2 i ∗ measure M (C

i))
∧ finite K ∧ (∀ i∈K . ∀ j∈K . i 6= j −→ C i ∩ C j = {})
∧ (∀ i ∈ K . C i ∈ measurable-sets M ) ∧ (

⋃
i∈K . C i) = UNIV

∧ nonnegative z1 ∧ nonnegative z2
〈proof 〉

Additivity and monotonicity are now almost obvious, the latter trivially
implying uniqueness.

lemma assumes ms: measure-space M and a: a ∈ sfis f M and b: b ∈ sfis g M
shows sfis-add : a+b ∈ sfis (λw . f w + g w) M
〈proof 〉

lemma assumes ms: measure-space M and a: a ∈ sfis f M
and b: b ∈ sfis g M and fg : f≤g
shows sfis-mono: a ≤ b
〈proof 〉

lemma sfis-unique:
assumes ms: measure-space M and a: a ∈ sfis f M and b: b ∈ sfis f M
shows a=b
〈proof 〉

The integral of characteristic functions, as well as the effect of multiplication
with a constant, follows directly from the definition. Together with a gener-
alization of the addition theorem to setsums, a less restrictive introduction
rule emerges, making normal forms obsolete. It is only valid in measure
spaces though.

lemma sfis-char :
assumes ms: measure-space M and mA: A ∈ measurable-sets M
shows measure M A ∈ sfis χ A M 〈proof 〉

lemma sfis-times:
assumes a: a ∈ sfis f M and z : 0≤z
shows z∗a ∈ sfis (λw . z∗f w) M 〈proof 〉

lemma assumes ms: measure-space M
and a: ∀ i∈S . a i ∈ sfis (f i) M and S : finite S
shows sfis-setsum: (

∑
i∈S . a i) ∈ sfis (λt .

∑
i∈S . f i t) M 〈proof 〉

lemma sfis-intro:
assumes ms: measure-space M and Ams: ∀ i ∈ S . A i ∈ measurable-sets M
and nn: nonnegative x and S : finite S
shows (

∑
i∈S . x i ∗ measure M (A i)) ∈

sfis (λt .
∑

i∈(S ::nat set). x i ∗ χ (A i) t) M
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〈proof 〉

That is nearly all there is to know about simple function integral sets. It
will be useful anyway to have the next two facts available.

lemma sfis-nn:
assumes f : a ∈ sfis f M
shows nonnegative f 〈proof 〉

lemma setsum-rv :
assumes rvs: ∀ k∈K . (f k) ∈ rv M and ms: measure-space M
shows (λt .

∑
k∈K . f k t) ∈ rv M 〈proof 〉

lemma sfis-rv :
assumes ms: measure-space M and f : a ∈ sfis f M
shows f ∈ rv M 〈proof 〉

3.2.2 Nonnegative Functions

There is one more important fact about sfis, easily the hardest one to see.
It is about the relationship with monotone convergence and paves the way
for a sensible definition of nnfis, the nonnegative function integral sets, en-
abling monotonicity and thus uniqueness. A reasonably concise formal proof
could fortunately be achieved in spite of the nontrivial ideas involved — com-
pared for instance to the intuitive but hard-to-formalize sfis-present. A small
lemma is needed to ensure that the inequation, which depends on an arbi-
trary z strictly between 0 and 1, carries over to z = 1, thereby eliminating
z in the end.

lemma real-le-mult-sustain:
assumes zr :

∧
z . [[0<z ; z<1 ]] =⇒ z ∗ r ≤ y

shows r ≤ (y ::real)〈proof 〉
lemma sfis-mon-conv-mono:

assumes uf : u↑f and xu:
∧

n. x n ∈ sfis (u n) M and xy : x↑y
and sr : r ∈ sfis s M and sf : s ≤ f and ms: measure-space M

shows r ≤ y 〈proof 〉

Now we are ready for the second step. The integral of a monotone limit
of functions is the limit of their integrals. Note that this last limit has to
exist in the first place, since we decided not to use infinite values. Backed
by the last theorem and the preexisting knowledge about limits, the usual
basic properties are straightforward.

inductive-set
nnfis:: ( ′a ⇒ real) ⇒ ( ′a set set ∗ ( ′a set ⇒ real)) ⇒ real set
for f :: ′a ⇒ real and M :: ′a set set ∗ ( ′a set ⇒ real)
where
base: [[u↑f ;

∧
n. x n ∈ sfis (u n) M ; x↑y ]] =⇒ y ∈ nnfis f M

lemma sfis-nnfis:
assumes s: a ∈ sfis f M
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shows a ∈ nnfis f M 〈proof 〉

lemma nnfis-times:
assumes ms: measure-space M and a: a ∈ nnfis f M and nn: 0≤z
shows z∗a ∈ nnfis (λw . z∗f w) M 〈proof 〉

lemma nnfis-add :
assumes ms: measure-space M and a: a ∈ nnfis f M and b: b ∈ nnfis g M
shows a+b ∈ nnfis (λw . f w + g w) M 〈proof 〉

lemma assumes ms: measure-space M and a: a ∈ nnfis f M
and b: b ∈ nnfis g M and fg : f≤g
shows nnfis-mono: a ≤ b 〈proof 〉

corollary nnfis-unique:
assumes ms: measure-space M and a: a ∈ nnfis f M and b: b ∈ nnfis f M
shows a=b 〈proof 〉

There is much more to prove about nonnegative integration. Next up is
a classic theorem by Beppo Levi, the monotone convergence theorem. In
essence, it says that the introduction rule for nnfis holds not only for se-
quences of simple functions, but for any sequence of nonnegative integrable
functions. It should be mentioned that this theorem cannot be formulated
for the Riemann integral. We prove it by exhibiting a sequence of sim-
ple functions that converges to the same limit as the original one and then
applying the introduction rule.

The construction and properties of the sequence are slightly intricate. By
definition, for any fn in the original sequence, there is a sequence (umn)m∈N
of simple functions converging to it. The nth element of the new sequence
is the upper closure of the nth elements of the first n sequences.

definition
upclose:: ( ′a ⇒ real) ⇒ ( ′a ⇒ real) ⇒ ( ′a ⇒ real) where
upclose f g = (λt . max (f t) (g t))

primrec
mon-upclose-help :: nat ⇒ (nat ⇒ nat ⇒ ′a ⇒ real)⇒ nat ⇒ ( ′a ⇒ real) (muh)

where
muh 0 u m = u m 0
| muh (Suc n) u m = upclose (u m (Suc n)) (muh n u m)

definition
mon-upclose :: (nat ⇒ nat ⇒ ′a ⇒ real) ⇒ nat ⇒ ( ′a ⇒ real) (mu) where
mu u m = muh m u m

lemma sf-norm-help:
assumes fin: finite K and jK : j ∈ K and tj : t ∈ C j and iK : ∀ i∈K−{j}. t /∈

C i
shows (

∑
i∈K . (z i) ∗ χ (C i) t) = z j 〈proof 〉
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lemma upclose-sfis:
assumes ms: measure-space M and f : a ∈ sfis f M and g : b ∈ sfis g M
shows ∃ c. c ∈ sfis (upclose f g) M 〈proof 〉

lemma mu-sfis:
assumes u:

∧
m n. ∃ a. a ∈ sfis (u m n) M and ms: measure-space M

shows ∃ c. ∀m. c m ∈ sfis (mu u m) M 〈proof 〉

lemma mu-help:
assumes uf :

∧
n. (λm. u m n)↑(f n) and fh: f ↑h

shows (mu u)↑h and
∧

n. mu u n ≤ f n
〈proof 〉

theorem nnfis-mon-conv :
assumes fh: f ↑h and xf :

∧
n. x n ∈ nnfis (f n) M and xy : x↑y

and ms: measure-space M
shows y ∈ nnfis h M
〈proof 〉

Establishing that only nonnegative functions may arise this way is a trivi-
ality.

lemma nnfis-nn: assumes a ∈ nnfis f M
shows nonnegative f 〈proof 〉

3.2.3 Integrable Functions

Before we take the final step of defining integrability and the integral oper-
ator, we should first clarify what kind of functions we are able to integrate
up to now. It is easy to see that all nonnegative integrable functions are
random variables.

lemma assumes measure-space M and a ∈ nnfis f M
shows nnfis-rv : f ∈ rv M 〈proof 〉

The converse does not hold of course, since there are measurable functions
whose integral is infinite. Regardless, it is possible to approximate any
measurable function using simple step-functions. This means that all non-
negative random variables are quasi integrable, as the property is sometimes
called, and brings forth the fundamental insight that a nonnegative func-
tion is integrable if and only if it is measurable and the integrals of the
simple functions that approximate it converge monotonically. Technically,
the proof is rather complex, involving many properties of real numbers.

lemma assumes measure-space M and : f ∈ rv M and nonnegative f
shows rv-mon-conv-sfis: ∃ u x . u↑f ∧ (∀n. x n ∈ sfis (u n) M )〈proof 〉

The following dominated convergence theorem is an easy corollary. It can
be effectively applied to show integrability.

corollary assumes ms: measure-space M and f : f ∈ rv M
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and b: b ∈ nnfis g M and fg : f≤g and nn: nonnegative f
shows nnfis-dom-conv : ∃ a. a ∈ nnfis f M ∧ a ≤ b 〈proof 〉

Speaking all the time about integrability, it is time to define it at last.

definition
integrable:: ( ′a ⇒ real) ⇒ ( ′a set set ∗ ( ′a set ⇒ real)) ⇒ bool where

integrable f M ←→ measure-space M ∧
(∃ x . x ∈ nnfis (pp f ) M ) ∧ (∃ y . y ∈ nnfis (np f ) M )

definition
integral :: ( ′a ⇒ real) ⇒ ( ′a set set ∗ ( ′a set ⇒ real)) ⇒ real (

∫
- ∂-) where

integrable f M =⇒
∫

f ∂M = (THE i . i ∈ nnfis (pp f ) M ) −
(THE j . j ∈ nnfis (np f ) M )

So the final step is done, the integral defined. The theorems we are already
used to prove from the earlier stages are still missing. Only now there are
always two properties to be shown: integrability and the value of the integral.
Isabelle makes it possible two have both goals in a single theorem, so that the
user may derive the statement he desires. Two useful lemmata follow. They
help lifting nonnegative function integral sets to integrals proper. Notice
how the dominated convergence theorem from above is employed in the
latter.

lemma nnfis-integral :
assumes nn: a ∈ nnfis f M and ms: measure-space M
shows integrable f M and

∫
f ∂ M = a

〈proof 〉

lemma nnfis-minus-nnfis-integral :
assumes a: a ∈ nnfis f M and b: b ∈ nnfis g M
and ms: measure-space M
shows integrable (λt . f t − g t) M and

∫
(λt . f t − g t) ∂ M = a − b

〈proof 〉

Armed with these, the standard integral behavior should not be hard to
derive. Mind that integrability always implies a measure space, just like
random variables did in 2.2.

theorem assumes integrable f M
shows integrable-rv : f ∈ rv M 〈proof 〉

theorem integral-char :
assumes ms: measure-space M and mA: A ∈ measurable-sets M
shows

∫
χ A ∂ M = measure M A and integrable χ A M 〈proof 〉

theorem integral-add :
assumes f : integrable f M and g : integrable g M
shows integrable (λt . f t + g t) M
and

∫
(λt . f t + g t) ∂M =

∫
f ∂M +

∫
g ∂M

〈proof 〉
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theorem integral-mono:
assumes f : integrable f M
and g : integrable g M and fg : f≤g
shows

∫
f ∂M ≤

∫
g ∂M

〈proof 〉

theorem integral-times:
assumes int : integrable f M
shows integrable (λt . a∗f t) M and

∫
(λt . a∗f t) ∂M = a∗

∫
f ∂M 〈proof 〉

To try out our definitions in an application, only one more theorem is miss-
ing. The famous Markov–Chebyshev inequation is not difficult to arrive at
using the basic integral properties.

theorem assumes int : integrable f M and a: 0<a and intp: integrable (λx . |f x |
ˆ n) M

shows markov-ineq : law M f {a..} ≤
∫

(λx . |f x | ˆ n) ∂M / (aˆn)
〈proof 〉

end



Chapter 4

Epilogue

To come to a conclusion, a few words shall subsume the work done and point
out opportunities for future research at the same time.

What has been achieved? After opening with some introductory notes, we
began translating the language of measure theory into machine checkable
text. For the material in section 2.1, this had been done before. Besides
laying the foundation for the development, the style of presentation should
make it noteworthy.

It is a particularity of the present work that its theories are written in the Isar
language, a declarative proof language that aims to be “intelligible”. This
is not a novelty, nor is it the author’s merit. Still, giving full formal proofs
in a text intended to be read by people is in a way experimental. Clearly,
it is bound to put some strain on the reader. Nevertheless, I hope that we
have made a little step towards formalizing mathematical knowledge in a
way that is equally suitable for computation and understanding. One aim
of the research done has been to demonstrate the viability of this approach.
Unquestionably, there is plenty room for improvement regarding the quality
of presentation. The language itself has, in my opinion, proven to be fit for
a wide range of applications, including the classical mathematics we used it
for.

Returning to a more content-centered viewpoint, we discussed the measura-
bility of real-valued functions in section 2.2. As explained there, earlier schol-
arship has resulted in related theories for the MIZAR environment though
the development seems to have stopped. Anyway, the mathematics covered
should be new to HOL-based systems.

More functions could obviously be demonstrated to be random variables. We
shortly commented on an alternative approach in the section just mentioned.
It is applicable to continuous functions, proving these measurable all at
once. Efforts on topological spaces would be required, but they constitute
an interesting field themselves, so it is probably worth the while.

28
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In the third chapter, integration in the Lebesgue style has been looked at
in depth. To my knowledge, no similar theory had been developed in a
theorem prover up to this point. We managed to systematically establish the
integral of increasingly complex functions. Simple or nonnegative functions
ought to be treated in sufficient detail by now. Of course, the repository
of potential supplementary facts is vast. Convergence theorems, as well as
the interrelationship with differentiation or concurrent integral concepts, are
but a few examples. They leave ample space for subsequent work.

A shortcoming of the present development lies in the lack of user assistance.
Greater care could be taken to ensure automatic application of appropriate
simplification rules — or to design such rules in the first place. Likewise,
the principal requirement of integrability might hinder easy usage of the
integral. Fixing a default value for undefined integrals could possibly make
some case distinctions obsolete. Facets like these have not been addressed
in their due extent.
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