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Abstract

Two models of an electronic hotel key card system are contrasted: a
state based and a trace based one. Both are defined, verified, and proved
equivalent in the theorem prover Isabelle/HOL. It is shown that if a guest
follows a certain safety policy regarding her key cards, she can be sure
that nobody but her can enter her room.

1 Introduction

This paper presents two models for a hotel key card system and the verification
of their safety (in Isabelle/HOL [6]). The models are based on Section 6.2, Hotel
Room Locking, and Appendix E in the book by Daniel Jackson [2]. Jackson
employs his Alloy system to check that there are no small counterexamples to
safety. We confirm his conjecture of safety by a formal proof.

Most hotels operate a digital key card system. Upon check-in, you receive a
card with your own key on it (typically a pseudorandom number). The lock for
each room reads your card and opens the door if the key is correct. The system
is decentralized, i.e. each lock is a stand-alone, battery-powered device without
connection to the computer at reception or to any other device. So how does
the lock know that your key is correct? There are a number of similar systems
and we discuss the one described in Appendix E of [2]. Here each card carries
two keys: the old key of the previous occupant of the room (key1), and your
own new key (key2). The lock always holds one key, its “current” key. When
you enter your room for the first time, the lock notices that its current key is
key1 on your card and recodes itself, i.e. it replaces its own current key with
key2 on your card. When you enter the next time, the lock finds that its current
key is equal to your key2 and opens the door without recoding itself. Your card
is never modified by the lock. Eventually, a new guest with a new key enters
the room, recodes the lock, and you cannot enter anymore.

After a short introduction of the notation we discuss two very different spec-
ifications, a state based and a trace based one, and prove their safety and their
equivalence. The complete formalization is available online in the Archive of
Formal Proofs at afp.sf.net.

∗Appeared in proceedings of ICTAC 2006 [5]
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1.1 Notation

HOL conforms largely to everyday mathematical notation. This section intro-
duces further non-standard notation and in particular a few basic data types
with their primitive operations.

Types The type of truth values is called bool. The space of total functions is
denoted by ⇒. Type variables start with a quote, as in ′a, ′b etc. The
notation t::τ means that term t has type τ .

Functions can be updated at x with new value y, written f (x := y). The
range of a function is range f, inj f means f is injective.

Pairs come with the two projection functions fst :: ′a × ′b ⇒ ′a and snd :: ′a
× ′b ⇒ ′b.

Sets have type ′a set.

Lists (type ′a list) come with the empty list [], the infix constructor · , the
infix @ that appends two lists, and the conversion function set from lists
to sets. Variable names ending in “s” usually stand for lists.

Records are constructed like this (|f 1 = v1, . . .|) and updated like this
r(|f i := v i, . . .|), where the f i are the field names, the v i the values and r
is a record.

Datatype option is defined like this

datatype ′a option = None | Some ′a

and adjoins a new element None to a type ′a. For succinctness we write bac
instead of Some a.

Note that [[A1; . . .; An]] =⇒ A abbreviates A1 =⇒ . . . =⇒ An =⇒ A, which
is the same as “If A1 and . . . and An then A”.

2 A state based model

The model is based on three opaque types guest, key and room. Type card is
just an abbreviation for key × key.

The state of the system is modelled as a record which combines the infor-
mation about the front desk, the rooms and the guests.

record state =
owns :: room ⇒ guest option
currk :: room ⇒ key
issued :: key set
cards :: guest ⇒ card set
roomk :: room ⇒ key
isin :: room ⇒ guest set
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safe :: room ⇒ bool

Reception records who owns a room (if anybody, hence guest option), the cur-
rent key currk that has been issued for a room, and which keys have been issued
so far. Each guest has a set of cards. Each room has a key roomk recorded in
the lock and a set isin of occupants. The auxiliary variable safe is explained
further below; we ignore it for now.

In specification languages like Z, VDM and B we would now define a number
of operations on this state space. Since they are the only permissible operations
on the state, this defines a set of reachable states. In a purely logical environment
like Isabelle/HOL this set can be defined directly by an inductive definition.
Each clause of the definition corresponds to a transition/operation/event. This
is the standard approach to modelling state machines in theorem provers.

The set of reachable states of the system (called reach) is defined by four
transitions: initialization, checking in, entering a room, and leaving a room:

init :
inj initk =⇒
(| owns = (λr . None), currk = initk , issued = range initk ,
cards = (λg . {}), roomk = initk , isin = (λr . {}),
safe = (λr . True) |) ∈ reach

| check-in:
[[ s ∈ reach; k /∈ issued s ]] =⇒
s(| currk := (currk s)(r := k), issued := issued s ∪ {k},

cards := (cards s)(g := cards s g ∪ {(currk s r , k)}),
owns := (owns s)(r := Some g),
safe := (safe s)(r := False) |) ∈ reach

| enter-room:
[[ s ∈ reach; (k ,k ′) ∈ cards s g ; roomk s r ∈ {k ,k ′} ]] =⇒
s(| isin := (isin s)(r := isin s r ∪ {g}),

roomk := (roomk s)(r := k ′),
safe := (safe s)(r := owns s r = bgc ∧ isin s r = {} ∧ k ′ = currk s r

∨ safe s r)
|) ∈ reach

| exit-room:
[[ s ∈ reach; g ∈ isin s r ]] =⇒
s(| isin := (isin s)(r := isin s r − {g}) |) ∈ reach

There is no check-out event because it is implicit in the next check-in for
that room: this covers the cases where a guest leaves without checking out (in
which case the room should not be blocked forever) or where the hotel decides
to rent out a room prematurely, probably by accident. Neither do guests have to
return their cards at any point because they may loose cards or may pretended
to have lost them. We will now explain the events.

init Initialization requires that every room has a different key, i.e. that currk
is injective. Nobody owns a room, the keys of all rooms are recorded as
issued, nobody has a card, and all rooms are empty.

enter-room A guest may enter if either of the two keys on his card equal the
room key. Then g is added to the occupants of r and the room key is set
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to the second key on the card. Normally this has no effect because the
second key is already the room key. But when entering for the first time,
the first key on the card equals the room key and then the lock is actually
recoded.

exit-room removes an occupant from the occupants of a room.

check-in for room r and guest g issues the card (currk s r , k) to g, where k is
new, makes g the owner of the room, and sets currk s r to the new key k.

The reader can easily check that our specification allows the intended dis-
tributed implementation: entering only reads and writes the key in that lock,
and check-in only reads and writes the information at reception.

In contrast to Jackson we require that initially distinct rooms have distinct
keys. This protects the hotel from its guests: otherwise a guest may be able to
enter rooms he does not own, potentially stealing objects from those rooms. Of
course he can also steal objects from his own room, but in that case it is easier
to hold him responsible. In general, the hotel may just want to minimize the
opportunity for theft.

The main difference to Jackson’s model is that his can talk about transitions
between states rather than merely about reachable states. This means that he
can specify that unauthorized entry into a room should not occur. Because our
specification does not formalize the transition relation itself, we need to include
the isin component in order to express the same requirement. In the end, we
would like to establish that the system is safe: only the owner of a room can be
in a room:

[[s ∈ reach; g ∈ isin s r ]] =⇒ owns s r = bgc

Unfortunately, this is just not true. It does not take a PhD in computer science
to come up with the following scenario: because guests can retain their cards,
there is nothing to stop a guest from reentering his old room after he has checked
out (in our model: after the next guest has checked in), but before the next
guest has entered his room. Hence the best we can do is to prove a conditional
safety property: under certain conditions, the above safety property holds. The
question is: which conditions? It is clear that the room must be empty when
its owner enters it, or all bets are off. But is that sufficient? Unfortunately not.
Jackson’s Alloy tool took 2 seconds [2, p. 303] to find the following “guest-in-
the-middle” attack:

1. Guest 1 checks in and obtains a card (k1, k2) for room 1 (whose key in the
lock is k1). Guest 1 does not enter room 1.

2. Guest 2 checks in, obtains a card (k2, k3) for room 1, but does not enter
room 1 either.

3. Guest 1 checks in again, obtains a card (k3, k4), goes to room 1, opens it
with his old card (k1, k2), finds the room empty, and feels safe . . .

After Guest 1 has left his room, Guest 2 enters and makes off with the luggage.
Jackson now assumes that guests return their cards upon check-out, which

can be modelled as follows: upon check-in, the new card is not added to the
guest’s set of cards but it replaces his previous set of cards, i.e. guests return

4



old cards the next time they check in. Under this assumption, Alloy finds no
more counterexamples to safety — at least not up to 6 cards and keys and 3
guests and rooms. This is not a proof but a strong indication that the given
assumptions suffice for safety. We prove that this is indeed the case.

It should be noted that the system also suffers from a liveness problem: if a
guest never enters the room he checked in to, that room is forever blocked. In
practice this is dealt with by a master key. We ignore liveness.

2.1 Formalizing safety

It should be clear that one cannot force guests to always return their cards (or,
equivalently, never to use an old card). We can only prove that if they do,
their room is safe. However, we do not follow Jackson’s approach of globally
assuming everybody returns their old cards upon check-in. Instead we would
like to take a local approach where it is up to each guest whether he follows this
safety policy. We allow guests to keep their cards but make safety dependent
on how they use them. This generality requires a finer grained model: we need
to record if a guest has entered his room in a safe manner, i.e. if it was empty
and if he used the latest key for the room, the one stored at reception. The
auxiliary variable safe records for each room if this was the case at some point
between his last check-in and now. The main theorem will be that if a room is
safe in this manner, then only the owner can be in the room. Now we explain
how safe is modified with each event:

init sets safe to True for every room.

check-in for room r resets safe s r because it is not safe for the new owner yet.

enter-room for room r sets safe s r if the owner entered an empty room using
the latest card issued for that room by reception, or if the room was
already safe.

exit-room does not modify safe.

The reader should convince his or herself that safe corresponds to the infor-
mal safety policy set out above. Note that a guest may find his room non-empty
the first time he enters, and safe will not be set, but he may come back later,
find the room empty, and then safe will be set. Furthermore, it is important
that enter-room cannot reset safe due to the disjunct ∨ safe s r. Hence check-in
is the only event that can reset safe. That is, a room stays safe until the next
check-in. Additionally safe is initially True, which is fine because initially in-
jectivity of initk prohibits illegal entries by non-owners.

Note that because none of the other state components depend on safe, it is
truly auxiliary: it can be deleted from the system and the same set of reachable
states is obtained, modulo the absence of safe.

We have formalized a very general safety policy of always using the latest
card. A special case of this policy is the one called NoIntervening by Jackson [2,
p. 200]: every check-in must immediately be followed by the corresponding
enter-room.

〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉
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2.2 Verifying safety

All of our lemmas are invariants of reach. The complete list, culminating in the
main theorem, is this:

Lemma 1 1. s ∈ reach =⇒ currk s r ∈ issued s

2. [[s ∈ reach; (k , k ′) ∈ cards s g ]] =⇒ k ∈ issued s

3. [[s ∈ reach; (k , k ′) ∈ cards s g ]] =⇒ k ′ ∈ issued s

4. s ∈ reach =⇒ roomk s k ∈ issued s

5. s ∈ reach =⇒ ∀ r r ′. (currk s r = currk s r ′) = (r = r ′)

6. s ∈ reach =⇒ (currk s r , k ′) /∈ cards s g

7. [[s ∈ reach; (k1, k) ∈ cards s g1; (k2, k) ∈ cards s g2]] =⇒ g1 = g2

8. [[s ∈ reach; safe s r ]] =⇒ roomk s r = currk s r

9. [[s ∈ reach; safe s r ; (k ′, roomk s r) ∈ cards s g ]] =⇒ owns s r = bgc

Theorem 1 If s ∈ reach and safe s r and g ∈ isin s r then owns s r = bgc.

The lemmas and the theorem are proved in this order, each one is marked as a
simplification rule, and each proof is a one-liner: induction on s ∈ reach followed
by auto.

Although, or maybe even because these proofs work so smoothly one may
like to understand why. Hence we examine the proof of Theorem 1 in more
detail. The only interesting case is enter-room. We assume that guest g1 enters
room r1 with card (k1, k2) and call the new state t. We assume safe t r and g
∈ isin t r and prove owns t r = bgc by case distinction. If r1 6= r, the claim
follows directly from the induction hypothesis using safe s r and g ∈ isin t r
because owns t r = owns s r and safe t r = safe s r. If r1 = r then g ∈ isin t
r is equivalent with g ∈ isin s r ∨ g = g1. If g ∈ isin s r then safe s r follows
from safe t r by definition of enter-room because g ∈ isin s r implies isin s
r 6= ∅. Hence the induction hypothesis implies the claim. If g = g1 we make
another case distinction. If k2 = roomk s r, the claim follows immediately from
Lemma 1.9 above: only the owner of a room can possess a card where the second
key is the room key. If k1 = roomk s r then, by definition of enter-room, safe t
r implies owns s r = bgc ∨ safe s r. In the first case the claim is immediate. If
safe s r then roomk s r = currk s r (by Lemma 1.8) and thus (currk s r , k2) ∈
cards s g by assumption (k1, k2) ∈ cards s g1, thus contradicting Lemma 1.6.

This detailed proof shows that a number of case distinctions are required.
Luckily, they all suggest themselves to Isabelle via the definition of function
update (:=) or via disjunctions that arise automatically.

〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉
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2.3 An extension

To test the flexibility of our model we extended it with the possibility for ob-
taining a new card, e.g. when one has lost one’s card. Now reception needs
to remember not just the current but also the previous key for each room, i.e.
a new field prevk :: room ⇒ key is added to state. It is initialized with the
same value as currk : though strictly speaking it could be arbitrary, this permits
the convenient invariant prevk s r ∈ issued s. Upon check-in we set prevk to
(prevk s)(r := currk s r). Event new-card is simple enough:

[[s ∈ reach; owns s r = bgc]]
=⇒ s(|cards := (cards s)(g := cards s g ∪ {(prevk s r , currk s r)})|) ∈ reach

The verification is not seriously affected. Some additional invariants are
required

s ∈ reach =⇒ prevk s r ∈ issued s
[[s ∈ reach; owns s r ′ = bgc]] =⇒ currk s r 6= prevk s r ′

[[s ∈ reach; owns s r = bgc; g 6= g ′]] =⇒ (k , currk s r) /∈ cards s g ′

but the proofs are still of the same trivial induct-auto format.
Adding a further event for loosing a card has no impact at all on the proofs.

3 A trace based model

The only clumsy aspect of the state based model is safe: we use a state com-
ponent to record if the sequence of events that lead to a state satisfies some
property. That is, we simulate a condition on traces via the state. Unsur-
prisingly, it is not trivial to convince oneself that safe really has the informal
meaning set out at the beginning of subsection 2.1. Hence we now describe an
alternative, purely trace based model, similar to Paulson’s inductive protocol
model [7]. The events are:

datatype event =
Check-in guest room card | Enter guest room card | Exit guest room

Instead of a state, we have a trace, i.e. list of events, and extract the state
from the trace:

consts
initk :: room ⇒ key

primrec owns :: event list ⇒ room ⇒ guest option where
owns [] r = None |
owns (e#s) r = (case e of
Check-in g r ′ c ⇒ if r ′ = r then Some g else owns s r |
Enter g r ′ c ⇒ owns s r |
Exit g r ′ ⇒ owns s r)

primrec currk :: event list ⇒ room ⇒ key where
currk [] r = initk r |
currk (e#s) r = (let k = currk s r in

case e of Check-in g r ′ c ⇒ if r ′ = r then snd c else k
| Enter g r ′ c ⇒ k
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| Exit g r ⇒ k)

primrec issued :: event list ⇒ key set where
issued [] = range initk |
issued (e#s) = issued s ∪

(case e of Check-in g r c ⇒ {snd c} | Enter g r c ⇒ {} | Exit g r ⇒ {})

primrec cards :: event list ⇒ guest ⇒ card set where
cards [] g = {} |
cards (e#s) g = (let C = cards s g in

case e of Check-in g ′ r c ⇒ if g ′ = g then insert c C
else C

| Enter g r c ⇒ C
| Exit g r ⇒ C )

primrec roomk :: event list ⇒ room ⇒ key where
roomk [] r = initk r |
roomk (e#s) r = (let k = roomk s r in

case e of Check-in g r ′ c ⇒ k
| Enter g r ′ (x ,y) ⇒ if r ′ = r (∗& x = k∗) then y else k
| Exit g r ⇒ k)

primrec isin :: event list ⇒ room ⇒ guest set where
isin [] r = {} |
isin (e#s) r = (let G = isin s r in

case e of Check-in g r c ⇒ G
| Enter g r ′ c ⇒ if r ′ = r then {g} ∪ G else G
| Exit g r ′ ⇒ if r ′=r then G − {g} else G)

primrec hotel :: event list ⇒ bool where
hotel [] = True |
hotel (e # s) = (hotel s & (case e of
Check-in g r (k ,k ′) ⇒ k = currk s r ∧ k ′ /∈ issued s |
Enter g r (k ,k ′) ⇒ (k ,k ′) : cards s g & (roomk s r : {k , k ′}) |
Exit g r ⇒ g : isin s r))

Except for initk, which is completely unspecified, all these functions are
defined by primitive recursion over traces:

owns [] r = None
owns (e · s) r =
(case e of Check-in g r ′ c ⇒ if r ′ = r then bgc else owns s r
| - ⇒ owns s r)

currk [] r = initk r
currk (e · s) r =
(let k = currk s r
in case e of Check-in g r ′ c ⇒ if r ′ = r then snd c else k | - ⇒ k)

issued [] = range initk
issued (e · s) = issued s ∪ (case e of Check-in g r c ⇒ {snd c} | - ⇒ ∅)

cards [] g = ∅
cards (e · s) g =
(let C = cards s g
in case e of Check-in g ′ r c ⇒ if g ′ = g then {c} ∪ C else C | - ⇒ C )
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roomk [] r = initk r
roomk (e · s) r =
(let k = roomk s r
in case e of Enter g r ′ (x , y) ⇒ if r ′ = r then y else k | - ⇒ k)

isin [] r = ∅
isin (e · s) r =
(let G = isin s r
in case e of Check-in g r c ⇒ G
| Enter g r ′ c ⇒ if r ′ = r then {g} ∪ G else G
| Exit g r ′ ⇒ if r ′ = r then G − {g} else G)

However, not every trace is possible. Function hotel tells us which traces
correspond to real hotels:

hotel [] = True
hotel (e · s) =
(hotel s ∧
(case e of Check-in g r (k , k ′) ⇒ k = currk s r ∧ k ′ /∈ issued s
| Enter g r (k , k ′) ⇒ (k , k ′) ∈ cards s g ∧ roomk s r ∈ {k , k ′}
| Exit g r ⇒ g ∈ isin s r))

Alternatively we could have followed Paulson [7] in defining hotel as an inductive
set of traces. The difference is only slight.

3.1 Formalizing safety

The principal advantage of the trace model is the intuitive specification of safety.
Using the auxiliary predicate no-Check-in

no-Check-in s r ≡ ¬(∃ g c. Check-in g r c ∈ set s)

we define a trace to be safe0 for a room if the card obtained at the last Check-in
was later actually used to Enter the room:

safe0 s r = (∃ s1 s2 s3 g c.
s = s3 @ [Enter g r c] @ s2 @ [Check-in g r c] @ s1 ∧ no-Check-in (s3 @ s2) r)

A trace is safe if additionally the room was empty when it was entered:

safe s r = (∃ s1 s2 s3 g c.
s = s3 @ [Enter g r c] @ s2 @ [Check-in g r c] @ s1 ∧
no-Check-in (s3 @ s2) r ∧ isin (s2 @ [Check-in g r c] @ s1) r = {})

The two notions of safety are distinguished because, except for the main theo-
rem, safe0 suffices.

The alert reader may already have wondered why, in contrast to the state
based model, we do not require initk to be injective. If initk is not injective, e.g.
initk r1 = initk r2 and r1 6= r2, then [Enter g r2 (initk r1, k), Check-in g r1
(initk r1, k)] is a legal trace and guest g ends up in a room he is not the owner
of. However, this is not a safe trace for room r2 according to our definition.
This reflects that hotel rooms are not safe until the first time their owner has
entered them. We no longer protect the hotel from its guests.

〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉
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theorem safe: assumes hotel s and safe s r and g ∈ isin s r
shows owns s r = bgc

〈proof 〉

Figure 1: Isar proof of Theorem 2

3.2 Verifying safety

Lemma 1 largely carries over after replacing s ∈ reach by hotel s and safe by
safe0. Only properties 5 and 6 no longer hold because we no longer assume
that roomk is initially injective. They are replaced by two somewhat similar
properties:

Lemma 2

1. [[hotel (s2 @ Check-in g r (k , k ′) · s1);
k ′ = currk (s2 @ Check-in g r (k , k ′) · s1) r ′]]

=⇒ r ′ = r

2. [[hotel (s2 @ [Check-in g r (k , k ′)] @ s1); no-Check-in s2 r ]]
=⇒ (k ′, k ′′) /∈ cards (s2 @ Check-in g r (k , k ′) · s1) g ′

Both are proved by induction on s2. In addition we need some easy structural
properties:

Lemma 3 1. issued (s @ s ′) = issued s ∪ issued s ′

2. no-Check-in s2 r =⇒ owns (s2 @ s1) r = owns s1 r

3. no-Check-in s2 r =⇒ currk (s2 @ s1) r = currk s1 r

The main theorem again correspond closely to its state based counterpart:

Theorem 2 If hotel s and safe s r and g ∈ isin s r then owns s r = bgc.

Let us examine the proof of this theorem to show how it differs from the state
based version. For the core of the proof let s = s3 @ [Enter g ′ r (k , k ′)] @ s2
@ [Check-in g ′ r (k , k ′)] @ s1 and assume isin (s2 @ [Check-in g ′ r (k , k ′)] @
s1) r = ∅ (0). By induction on s3 we prove

[[hotel s; no-Check-in (s3 @ s2) r ; g ∈ isin s r ]] =⇒ g ′ = g

The actual theorem follows by definition of safe. The base case of the induction
follows from (0). For the induction step let t = (e · s3) @ [Enter g ′ r (k , k ′)]
@ s2 @ [Check-in g ′ r (k , k ′)] @ s1. We assume hotel t, no-Check-in ((e · s3)
@ s2) r, and g ∈ isin s r, and show g ′ = g. The proof is by case distinction
on the event e. The cases Check-in and Exit follow directly from the induction
hypothesis because the set of occupants of r can only decrease. Now we focus
on the case e = Enter g ′′ r ′ c. If r ′ 6= r the set of occupants of r remains
unchanged and the claim follow directly from the induction hypothesis. If g ′′

6= g then g must already have been in r before the Enter event and the claim
again follows directly from the induction hypothesis. Now assume r ′ = r and
g ′′ = g. From hotel t we obtain hotel s (1) and c ∈ cards s g (2), and from
no-Check-in (s3 @ s2) r and (0) we obtain safe s r (3). Let c = (k1, k2). From
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Lemma 1.8 and Lemma 3.3 we obtain roomk s r = currk s r = k ′. Hence k1

6= roomk s r by Lemma 2.2 using (1), (2) and no-Check-in (s3 @ s2) r. Hence
k2 = roomk s r by hotel t. With Lemma 1.9 and (1–3) we obtain owns t r =
bgc. At the same time we have owns t r = bg ′c because hotel t and no-Check-in
((e · s3) @ s2) r : nobody has checked in to room r after g ′. Thus the claim g ′

= g follows.
The details of this proof differ from those of Theorem 1 but the structure is

very similar.

3.3 Eliminating isin

In the state based approach we needed isin to express our safety guarantees.
In the presence of traces, we can do away with it and talk about Enter events
instead. We show that if somebody enters a safe room, he is the owner:

Theorem 3 If hotel (Enter g r c · s) and safe0 s r then owns s r = bgc.

From safe0 s r it follows that s must be of the form s2 @ [Check-in g0 r c ′] @
s1 such that no-Check-in s2 r. Let c = (x , y) and c ′ = (k , k ′). By Lemma 1.8
we have roomk s r = currk s r = k ′. From hotel (Enter g r c · s) it follows that
(x , y) ∈ cards s g and k ′ ∈ {x , y}. By Lemma 2.2 x = k ′ would contradict (x ,
y) ∈ cards s g. Hence y = k ′. With Lemma 1.9 we obtain owns s r = bgc.

Having dispensed with isin we could also eliminate Exit to arrive at a model
closer to the ones in [2].

Finally one may quibble that all the safety theorems proved so far assume
safety of the room at that point in time when somebody enters it. That is,
the owner of the room must be sure that once a room is safe, it stays safe, in
order to profit from those safety theorems. Of course, this is the case as long as
nobody else checks in to that room:

Lemma 4 If safe0 s r and no-Check-in s ′ r then safe0 (s ′ @ s) r .

It follows easily that Theorem 3 also extends until check-in:

Corollary 1 If hotel (Enter g r c · s ′ @ s) and safe0 s r and no-Check-in s ′ r
then owns s r = bgc.

3.4 Completeness of safe

Having proved correctness of safe, i.e. that safe behaviour protects against in-
truders, one may wonder if safe is complete, i.e. if it covers all safe behaviour,
or if it is too restrictive. It turns out that safe is incomplete for two different
reasons. The trivial one is that in case initk is injective, every room is protected
against intruders right from the start. That is, [Check-in g r c] will only allow
g to enter r until somebody else checks in to r. The second, more subtle incom-
pleteness is that even if there are previous owners of a room, it may be safe to
enter a room with an old card c: one merely needs to make sure that no other
guest checked in after the check-in where one obtained c. However, formalizing
this is not only messy, it is also somewhat pointless: this liberalization is not
something a guest can take advantage of because there is no (direct) way he can
find out which of his cards meets this criterion. But without this knowledge,
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the only safe thing to do is to make sure he has used his latest card. This
incompleteness applies to the state based model as well.

〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉

4 Equivalence

Although the state based and the trace based model look similar enough, the
nagging feeling remains that they could be subtly different. Hence I wanted
to show the equivalence formally. This was very fortunate, because it revealed
some unintended discrepancies (no longer present). Although I had proved
both systems safe, it turned out that the state based version of safety was more
restrictive than the trace based one. In the state based version of safe the room
had to be empty the first time the owner enters with the latest card, whereas
in the trace based version any time the owner enters with the latest card can
make a room safe. Such errors in an automaton checking a trace property are
very common and show the superiority of the trace based formalism.

When comparing the two models we have to take two slight differences into
account:

• The initial setting of the room keys initk in the trace based model is an
arbitrary but fixed value. In the state based model any injective initial
value is fine.

• As a consequence (see the end of Section 3.1) state.safe is initially true
whereas Trace.safe is initially false.

Since many names occur in both models they are disambiguated by the prefixes
state and Trace.

In the one direction I have shown that any hotel trace starting with an
injective initk gives rise to a reachable state when the components of that state
are computed by the trace functions:

[[inj initk ; hotel t ]]
=⇒ (|state.owns = Trace.owns t , currk = Trace.currk t ,

issued = Trace.issued t , cards = Trace.cards t , roomk = Trace.roomk t ,
isin = Trace.isin t ,
safe = λr . Trace.safe t r ∨ Trace.owns t r = None|)

∈ reach

Conversely, for any reachable state there is a hotel trace leading to it:

s ∈ reach =⇒
∃ t ik .

initk = ik −→
hotel t ∧
state.cards s = Trace.cards t ∧
state.isin s = Trace.isin t ∧
state.roomk s = Trace.roomk t ∧
state.owns s = Trace.owns t ∧
state.currk s = Trace.currk t ∧
state.issued s = Trace.issued t ∧
state.safe s = (λr . Trace.safe t r ∨ Trace.owns t r = None)
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The precondition initk = ik just says that we can find some interpretation for
initk that works, namely the one that was chosen as the initial setting for the
keys in s.

The proofs are almost automatic, except for the safe component. In essence,
we have to show that the procedural state.safe implements the declarative
Trace.safe. The proof was complicated by the fact that initially it was not
true and I had to debug Trace.safe by proof. Unfortunately Isabelle’s current
counterexample finders [1, 8] did not seem to work here due to search space
reasons. Once the bugs were ironed out, the following key lemma, together with
some smaller lemmas, automated the correspondence proof for safe:

hotel (Enter g r (k , k ′) · t) =⇒
Trace.safe (Enter g r (k , k ′) · t) r =
(Trace.owns t r = bgc ∧ Trace.isin t r = ∅ ∧ k ′ = Trace.currk t r ∨
Trace.safe t r)

In addition we used many lemmas from the trace model, including Theorem 2.

5 Conclusion

We have seen two different specification styles in this case study. The state
based one is conceptually simpler, but may require auxiliary state components
which express properties of the trace that lead to that state. And it may not be
obvious if the definition of the state component correctly captures the desired
property of the trace. A trace based specification expresses those properties
directly. The proofs in the state based version are all automatic whereas in
the trace based setting 4 proofs (out of 15) require special care, thus more
than doubling the overall proof size. It would be interesting to test Isabelle’s
emerging link with automatic first-order provers [3] on the trace based proofs.

There are two different proof styles in Isabelle: unstructured apply-scripts
[6] and structured Isar proofs [9, 4]. Figure 1 shows an example of the latter.
Even if the reader is unfamiliar with Isar, it is easy to see that this proof is very
close to the version given in the text. Although apply-scripts are notoriously
obscure, and even the author may not have an intuitive grasp of the structure
of the proof, in our kind of application they also have advantages. In the apply-
style, Isabelle’s proof methods prove as much as possible automatically and
leave the remaining cases to the user. This leads to much shorter (but more
brittle) proofs: The (admittedly detailed) proof in Figure 1 was obtained from
an apply-script of less than half the size.

The models given in this paper are very natural but by no means the only
possible ones. Jackson himself uses an alternative trace based one which replaces
the list data structure by an explicit notion of time. It would be interesting to
see further treatments of this problem in other formalisms, for example temporal
logics.
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