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Abstract

The verification of the Deutsch-Schorr-Waite graph marking algo-
rithm is used as a benchmark in many formalizations of pointer pro-
grams. The main purpose of this mechanization is to show how data
refinement of invariant based programs can be used in verifying prac-
tical algorithms. The verification starts with an abstract algorithm
working on a graph given by a relation next on nodes. Gradually the
abstract program is refined into Deutsch-Schorr-Waite graph marking
algorithm where only one bit per graph node of additional memory is
used for marking.
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1 Introduction

The verification of the Deutsch-Schorr-Waite (DSW) [14, 10] graph mark-
ing algorithm is used as a benchmark in many formalizations of pointer
programs [11, 1]. The main purpose of this mechanization is to show how
data refinement [12] of invariant based programs [3, 4, 5, 6] can be used in
verifying practical algorithms.

The DSW algorithm marks all nodes in a graph that are reachable from
a root node. The marking is achieved using only one extra bit of memory
for every node. The graph is given by two pointer functions, left and right,
which for any given node return its left and right successors, respectively.
While marking, the left and right functions are altered to represent a stack
that describes the path from the root to the current node in the graph.
On completion the original graph structure is restored. We construct the
DSW algorithm by a sequence of three successive data refinement steps.
One step in these refinements is a generalization of the DSW algorithm to
an algorithm which marks a graph given by a family of pointer functions
instead of left and right only.

Invariant based programming is an approach to construct correct pro-
grams where we start by identifying all basic situations (pre- and post-
conditions, and loop invariants) that could arise during the execution of the
algorithm. These situations are determined and described before any code
is written. After that, we identify the transitions between the situations,
which together determine the flow of control in the program. The transi-
tions are verified at the same time as they are constructed. The correctness
of the program is thus established as part of the construction process.



Data refinement [9, 2, 7, 8] is a technique of building correct programs
working on concrete data structures as refinements of more abstract pro-
grams working on abstract data structures. The correctness of the final
program follows from the correctness of the abstract program and from the
correctness of the data refinement.

Both the semantics and the data refinement of invariant based programs
were formalized in [13], and this verification is based on them.

We use a simple model of pointers where addresses (pointers, nodes) are
the elements of a set and pointer fields are global pointer functions from
addresses to addresses. Pointer updates (x.left := y) are done by modifying
the global pointer function left := left(x := y). Because of the nature of the
marking algorithm where no allocation and disposal of memory are needed
we do not treat these operations.

A number of Isabelle techniques are used here. The class mechanism is
used for extending the complete lattice theories as well as for introducing
well founded and transitive relations. The polimorphism is used for the state
of the computation. In [13] the state of computation was introduced as a
type variable, or even more generaly, state predicates were introduced as
elements of a complete (boolean) lattice. Here the state of the computation
is instantiated with various tuples ranging from the abstract data in the
first algorithm to the concrete data in the final refinement. The locale
mechanism of Isabelle is used to introduce the specification variables and
their invariants. These specification variables are used for example to prove
that the main variables are restored to their initial values when the algorithm
terminates. The locale extension and partial instantiation mechanisms turn
out to be also very useful in the data refinements of DSW. We start with a
locale which fixes the abstract graph as a relation next on nodes. This locale
is first partially interpreted into a locale which replaces next by a union of
a family of pointer functions. In the final refinement step the locale of the
pointer functions is interpreted into a locale with only two pointer functions,
left and right.

2 Address Graph

theory Graph
imports Main

begin

This theory introduces the graph to be marked as a relation next on nodes
(addresses). We assume that we have a special node nil (the null address).
We have a node root from which we start marking the graph. We also
assume that nil is not related by next to any node and any node is not
related by next to nil.



locale node =
fixes nil  :: 'node
fixes root :: 'node

locale graph = node +
fixes next :: ('node x 'node) set
assumes next-not-nil-left: (! « . (nil, z) ¢ next)
assumes next-not-nil-right: (! « . (z, nil) ¢ next)
begin

On lists of nodes we introduce two operations similar to existing hd and tl
for getting the head and the tail of a list. The new function head applied to
a nonempty list returns the head of the list, and it reurns nil when applied
to the empty list. The function tail returns the tail of the list when applied
to a non-empty list, and it returns the empty list otherwise.

definition
head S = (if S =[] then nil else (hd S))

definition
tail (S::'a list) = (if S =[] then [] else (¢ 5))

lemma [simp]: ((nil, ) € next) = False
(proof)

lemma [simp]: ((x, nil) € next) = False

(proof)

theorem head-not-nil [simp]:
(head S # nil) = (head S = hd S AN tail S = t1.S AN hd S # nil NS #[])

(proof)

theorem nonempty-head [simp]:
head (v # S) =z
(proof)

theorem nonempty-tail [simp]:

tail (x # S) =S8
(proof)

end

end

3 Marking Using a Set

theory SetMark



imports Graph ../DataRefinementIBP | DataRefinement

begin

We construct in this theory a diagram which computes all reachable nodes
from a given root node in a graph. The graph is defined in the theory Graph
and is given by a relation next on the nodes of the graph.

The diagram has only three ordered situation (init > loop > final). The
termination variant is a pair of a situation and a natural number with the
lexicographic ordering. The idea of this ordering is that we can go from a
bigger situation to a smaller one, however if we stay in the same situation
the second component of the variant must decrease.

The idea of the algorithm is that it starts with a set X containing the root
element and the root is marked. As long as X is not empty, if z € X and
y is an unmarked sucessor of z we add y to X. If x € X has no unmarked
sucessors it is removed from X. The algorithm terminates when X is empty.

datatype I = init | loop | final

declare I.split [split]

instantiation I :: well-founded-transitive
begin

definition
less-I-def: i < j = (j = init A (i = loop V i = final)) V (j = loop A i = final)

definition
less-eq-I-def: (iz:I) < (jul)=i=jVi<j

instance (proof)
end

definition (in graph)
reach © = {y . (z, y) € next* A y # nil}

theorem (in graph) reach-nil [simp]: reach nil = {}
{proof)

theorem (in graph) reach-next: b € reach a = (b, ¢) € next = ¢ € reach a
(proof)

definition (in graph)
path Smrk ={z . (3 s.s €8 A (s, z) € next O (next N ((—mrk)x(—mrk)))*

)}

The set path S mrk contains all reachable nodes from S along paths with



unmarked nodes.

lemma (in graph) trascl-less: © # y = (a, z) € R* =
((a,z) € (RN (—{yh)x(—{y})" vV (y2) € R O (RN (—{y})x(—{y})")

(proof)

lemma (in graph) add-set [simp|: © # y = = € path S mrk = x € path (insert
y S) (insert y mrk)
{proof)

lemma (in graph) add-set2: © € path S mrk = = ¢ path (insert y S) (insert y
mrk) =z =1y
(proof)

lemma (in graph) del-stack [simp]: (V y . (¢, y) € next — y € mrk) = z ¢
mrk => x € path S mrk = © € path (S — {t}) mrk
{proof)

lemma (in graph) init-set [simp]: © € reach root = & # root => x € path {root}

{root}

(proof)

lemma (in graph) init-set2: x € reach root = x ¢ path {root} {root} = = =
root

{proof)

3.1 Transitions

definition (in graph)
Q1 =X (X::('node set), mrk::("node set)) . { (X ":('node set), mrk’) . (root::'node)
=nil AN X"'={} AN mrk! = mrk}

definition (in graph)
Q2 = X (X::('node set), mrk::('node set)) . { (X', mrk’) . (root::'node) # nil A
X' = {root::'node} N mrk’ = {root::'node}}

definition (in graph)
Q3 =X (X, mrk) . { (X', mrk’) .
FrzeX . Jy.(z,y) €next Ny¢ mkANX' =X U{y} A mrk = mrk

U {yh)}

definition (in graph)
Q4 =X\ (X, mrk) . { (X', mrk’) .
FzeX . Vy.(z,y) €next — yemrk) NX' =X — {a} A mrk’ =
mrk)}

definition (in graph)
Q5 = X (X::('node set), mrk::('node set)) . { (X":('node set), mrk’) . X = {} A
mrk = mrk’}



3.2 Invariants

definition (in graph)
Loop = { (X, mrk) .
finite (—mrk) A finite X AN X C mrk A
mrk C reach root A reach root N —mrk C path X mrk}

definition
trm = X (X, mrk) . 2 x card (—mrk) + card X

definition
term-eqt w = {s . t s = w}

definition
term-lesstw = {s . t s < w}

lemma union-term-eq[simp]: (| w . term-eq t w) = UNIV
{proof)

lemma union-less-term-eq[simp]: ((Jve{v. v < w}. term-eq t v) = term-less t w
{proof)

definition (in graph)
Init = { (X::('node set), mrk::('node set)) . finite (—mrk) N mrk = {}}

definition (in graph)
Final = { (X::('node set), mrk::('node set)) . mrk = reach root}

definition (in graph)
SetMarkInv i = (case i of
Linit = Init |
I.loop = Loop |
I.final = Final)

definition (in graph)
SetMarkInvFinal i = (case i of
I.final = Final |

- =>{)

definition (in graph) [simp]:
SetMarkInvTerm w i = (case i of
Linit = Init |
I.loop = Loop N {s . trm s = w} |
I.final = Final)

definition (in graph)

SetMark-rel = X (i, j) . (case (i, j) of
(I.ingt, I.loop) = Q1 U Q2 |
(I.loop, I.loop) = Q3 U Q4 |
(I.loop, I.final) = Q5 |



-= 1)

3.3 Diagram
definition (in graph)
SetMark = X (i, j) . (case (i, ) of
(I.ingt, I.loop) = (demonic Q1) M (demonic Q2) |
(I.loop, I.loop) = (demonic Q3) M (demonic Q4) |
(I.loop, I.final) = demonic Q5 |
- = top)

lemma (in graph) dgr-dmonic-SetMark [simp]:
dgr-demonic SetMark-rel = SetMark
{proof )

lemma (in graph) SetMark-dmono [simp]:

dmono SetMark
(proof)

3.4 Correctness of the transitions

lemma (in graph) init-loop-1[simp): | Init {| demonic Q1 |} Loop

{proof)

lemma (in graph) init-loop-2[simp): = Init {| demonic Q2 |} Loop

{proof)

lemma (in graph) loop-loop-1[simp]: = (Loop N {s .
Q@3 |} (Loop N {s. trm s < w})
{proof)

lemma (in graph) loop-loop-2[simp]: = (Loop N {s .
Q4 |} (Loop N {s. trm s < w})
(proof)

w}) {| demonic

w}) {| demonic

lemma (in graph) loop-final[simp]: = (Loop N {s . trm s = w}) {| demonic Q5

|} Final
{proof)

lemma union-term-w[simp]: (Jw. {s. t s = w}) = UNIV

{proof)

lemma union-less-term-w[simp]: (Jve{v. v < w}. {s. ts=v}) ={s.ts < w}

{proof)

lemma sup-union[simp]: SUP Ai= (U w. A4 wi)
{proof)



lemma empty-pred-false[simp]: {} a = False
(proof )

lemma forall-simp[simp]: (la b.V z€ A.(a = (tz)) — (hx) Vb #uzx)=(V

x€ A . hx)
(proof)

lemma forall-simp2[simp]: (la b.V z€ A.ly . (a =tzy) — (hzy) — (g
YVbAuzy)=NVaecAd. ly. hay—gzy)
(proof )

3.5 Diagram correctness

The termination ordering for the SetMark diagram is the lexicographic or-
dering on pairs (i, n) where ¢ € I and n € nat.

interpretation DiagramTermination X (n:nat) (¢ 2 I) . (i, n)

(proof )

theorem (in graph) SetMark-correct:
= SetMarkInv {|pt SetMark|} SetMarkInvFinal

{proof)

theorem (in graph) SetMark-correct] [simp]:
Hoare-dgr SetMarkInv SetMark (SetMarkInv M (— grd (step SetMark)))

{proof)

theorem (in graph) stack-not-nil [simp]:
(mrk, S) € Loop = z € S = = # nil
(proof)

end

4 Marking Using a Stack

theory StackMark
imports SetMark DataRefinement
begin

In this theory we refine the set marking diagram to a diagram in which the
set is replaced by a list (stack). Iniatially the list contains the root element
and as long as the list is nonempty and the top of the list has an unmarked
successor 3, then y is added to the top of the list. If the top does not have



unmarked sucessors, it is removed from the list. The diagram terminates
when the list is empty.

The data refinement relation of the two diagrams is true if the list has
distinct elements and the elements of the list and the set are the same.

consts
dist:: 'a list = bool

primrec
dist [| = True
dist (a # L)= (- a mem L A dist L)

4.1 Transitions

definition (in graph)
Q1' s = let (stk::('node list), mrk::('node set)) = s in {(stk":('node list), mrk’)

root = nil A stk’ =[] A mrk’ = mrk}

definition (in graph)
Q2' s = let (stk::('node list), mrk::('node set)) = s in {(stk’, mrk’) . root # nil
A stk’ = [root] A mrk’ = mrk U {root}}

definition (in graph)
Q3" s = let (stk, mrk) = s in {(stk’, mrk’) . stk [ AN (3 y . (hd stk, y) €
next A\
y & mrk A stk! = y # stk A mrk’ = mrk U {y})}

definition (in graph)
Q4' s = let (stk, mrk) = s in {(stk’, mrk’) . stk # [] A
(V y . (hd stk, y) € next — y € mrk) A stk’ = tl stk N mrk’ = mrk}

definition
Q5" s = let (stk, mrk) = s in {(stk’, mrk’) . stk =[] A mrk’ = mrk}

4.2 Invariants
definition

Init’ = UNIV

definition
Loop’ = { (stk, mrk) . dist stk}

definition
Final’ = UNIV

definition [simp]:
StackMarkInv i = (case i of
Linit = Init’ |
I.loop = Loop' |

10



I.final = Final’)

4.3 Data refinement relations

definition
R1 = X (stk, mrk) . {(X, mrk’) . mrk’ = mrk}

definition
R2 = X (stk, mrk) . {(X, mrk’) . X = {x . x mem stk} A (stk, mrk) € Loop’ A
mrk’ = mrk}

definition [simp]:

R i = (case i of

Iinit = RI
I.loop = R2 |
I.final = R1)

definition (in graph)

StackMark-rel = (X (4, 7) . (case (i, j) of
(I.init, I.loop) = Q1'U Q2|
(I.loop, I.loop) = Q3'U Q4]
(I.loop, I.final) = Q5" |
-= 1)

4.4 Data refinement of the transitions

theorem (in graph) init-nil [simp]:
DataRefinement Init Q1 R1 R2 (demonic Q17)
(proof )

theorem (in graph) init-root [simp]:
DataRefinement Init Q2 R1 R2 (demonic Q27)
(proof )

theorem (in graph) stepl [simp]:
DataRefinement Loop Q3 R2 R2 (demonic Q3")
(proof)

theorem (in graph) step2 [simp]:
DataRefinement Loop Q4 R2 R2 (demonic Q4')
(proof)

theorem (in graph) final [simp]:
DataRefinement Loop Q5 R2 R1 (demonic Q5')
(proof)

4.5 Diagram data refinement

theorem (in graph) StackMark-DataRefinement [simp]:

11



DgrDataRefinement SetMarkInv SetMark-rel R (dgr-demonic StackMark-rel)
{proof )

4.6 Diagram correctness

theorem (in graph) StackMark-correct:
Hoare-dgr (dangelic R SetMarkInv) (dgr-demonic StackMark-rel) ((dangelic R
SetMarkInv) M (— grd (step ((dgr-demonic StackMark-rel)))))

(proof)

end

5 Generalization of Deutsch-Schorr-Waite Algo-
rithm

theory LinkMark
imports StackMark
begin

In the third step the stack diagram is refined to a diagram where no extra
memory is used. The relation next is replaced by two new variables link
and label. The variable label : node — index associates a label to every
node and the variable link : index — node — node is a collection of pointer
functions indexed by the set index of labels. For x € node, link i x is the
successor node of x along the function link i. In this context a node x is
reachable if there exists a path from the root to x along the links link ¢ such
that all nodes in this path are not nil and they are labeled by a special label
none € indezx.

The stack variable S is replaced by two new variables p and t ranging over
nodes. Variable p stores the head of S, ¢ stores the head of the tail of 5,
and the rest of S is stored by temporarily modifying the variables link and
label.

This algorithm is a generalization of the Deutsch-Schorr-Waite graph mark-
ing algorithm because we have a collection of pointer functions instead of
left and right only.

locale pointer = node +
fixes none :: "index
fixes link0::"index = 'node = 'node
fixes label0 :: 'node = 'index

assumes (nil::'node) = nil
begin

definition next = {(a, b) . (3 i . link0 i a =b) AN a # nil A b # nil A label0
a = none}

12



end

sublocale pointer C graph nil root next
(proof )

The locale pointer fixes the initial values for the variables link and label and
it defines the relation next as the union of all link ¢ functions, excluding
the mappings to nil, the mappings from nil as well as the mappings from
elements which are not labeled by none.

The next two recursive functions, label_0, link_0 are used to compute the
initial values of the variables label and link from their current values.

context pointer

begin

primrec
label-0:: ('node = 'index) = ('node list) = (‘node = 'index) where
label-0 bl [| = bl |
label-0 bl (z # 1) = label-0 (Ibl(z := none)) 1

lemma label-cong [cong: f = g = xs = ys = pointer.label-0 n f xs = pointer.label-0
ngys
(proof)

primrec

link-0:: ("index = 'node = 'node) = ('node = "index) = 'node = ('node list)
= ('index = 'node = 'node) where

link-0 Ink bl p ] = Ink |

link-0 Ink bl p (x # 1) = link-0 (Ink((Ibl z) := ((Ink (Ibl z))(z := p)))) bl z

The function stack defined bellow is the main data refinement relation con-
necting the stack from the abstract algorithm to its concrete representation
by temporarily modifying the variable link and label.

primrec
stack:: (“index = 'mnode = 'node) = ('node = 'index) = 'node = ('node list)
= bool where
stack Ink bl z |] = (z = nil) |
stack Ink bl z (y # 1) =
(x #nil Nz =y AN - xmeml A stack Ink bl (Ink (Ibl z) z) 1)

lemma label-out-range0 [simp]:
-~z mem S = label-0 Ibl S z = bl =

(proof)
lemma link-out-range0 [simp]:

- x mem S = link-0 link label p S iz = link i x
(proof )

13



lemma link-out-range [simp]: = ¢ mem S = link-0 link (label(z == y)) p S =
link-0 link label p S
{proof)

lemma empty-stack [simp]: stack link label nil S = (S = [])
(proof)

lemma stack-out-link-range [simp]: = p mem S = stack (link(i := (link i)(p =
q))) label © S = stack link label © S
{proof)

lemma stack-out-label-range [simpl: = p mem S = stack link (label(p == q)) = S
= stack link label z S

(proof)

definition
g mrk bl ptr x = ptr x # nil A ptr x ¢ mrk A bl x = none

lemma g-cong [cong|: mrk = mrkl = bl = bll = ptr = ptrl = z = «l
==>

pointer.g n m mrk bl ptr x = pointer.g n m mrk1 Ibl1 ptrl x1
(proof)

5.1 Transitions

definition
Q1" s = let (p, t, Ink, Ibl, mrk) = s in { (p’, t’, Ink’, Ibl', mrk’) .
root = nil A p’ = nil At/ = nil A Ink’ = Ink A bl = bl A mrk’ = mrk}

definition
Q2" s = let (p, t, Ink, Ibl, mrk) = s in { (p/, t', Ink’, Ibl', mrk’) .
root # nil A p’ = root A t' = nil A Ink’ = Ink N bl = bl A mrk’ = mrk U

{root}}

definition
Q3" s = let (p, t, Ink, Ibl, mrk) = s in { (p/, t', Ink’, Ibl', mrk’) .
p # nil A
(3 i .gmrk bl (inki) p A
p'=InkipANt'= pAink’= Ink(i:= (Ink i)(p:=1t)) NIl = Wl(p

=) A
mrk’ = mrk U {lnk i p})}
definition
Q4" s =let (p, t, Ink, Ibl, mrk) = s in { (p’, t', Ink’, Ibl’, mrk’) .

p #£ nil A
(V i .= gmrk bl (Ink i) p) At # nil A
"=t ANt =1Ink (Il t) t A lnk’ = Ink(Ibl t := (Ink (b1 t))(¢t := p)) A bl

14



= Ibl(t := none) A
mrk’ = mrk}

definition
Q5" s = let (p, t, Ink, Ibl, mrk) = s in { (p/, t’, Ink’, Ibl', mrk’) .
p # nil A
(V i .= gmrk bl (Ink i) p) At = nil A
p'=mnil ANt'=1t Alnk’ = Ink NIl = Il A mrk’ = mrk}

definition
Q6" s = let (p, t, Ink, Ibl, mrk) = s in {(p’, t', Ink’, Ibl', mrk’) . p = nil A
p'=p At =t ANink'=Ink ANII'= bl A mrk’ = mrk}

5.2 Invariants

definition
Init" = { (p, t, Ink, Ibl, mrk) . Ink = link0 A bl = label0}

definition
Loop” = UNIV

definition
Final” = Init"”

5.3 Data refinement relations

definition
R1'= (X (p, t, Ink, Ibl, mrk) . {(stk, mrk’) . (p, t, Ink, Ibl, mrk) € Init"" A mrk’
= mrk})

definition
R2'= (X (p, t, Ink, Ibl, mrk) . {(stk, mrk’) .

p = head stk A
t = head (tail stk) N
stack Ink Wbl t (tail stk) A
link0 = link-0 Ink bl p (tail stk) A
label0 = label-0 bl (tail stk) A
- nil mem stk A
mrk’ = mrk})

definition [simp]:

R’ i = (case i of
Linit = R1']|
I.loop = R2'|
I.final = R1’)

5.4 Diagram

definition
LinkMark-rel = (X (4, j) . (case (i, j) of

15



(I.init, I.loop) = Q1" U Q2" |

(I.loop, I.loop) = Q3" U (Q4" U Q5" |
(I.loop, I.final) = Q6" |

-= 1))

definition [simp]:
LinkMarkInv i = (case i of
Linit = Init" |
I.loop = Loop"" |
I.final = Final’’)

5.5 Data refinement of the transitions
theorem init! [simp]:
DataRefinement Init’ Q1’' R1' R2' (demonic Q1)
(proof )

theorem init2 [simp]:
DataRefinement Init’ Q2 R1' R2' (demonic Q2"
{proof )

theorem step! [simp]:
DataRefinement Loop’ Q3" R2' R2' (demonic Q3")

(proof )

lemma neqif [simp]: ¢ # y = (if y = x then a else b) = b
(proof )

theorem step?2 [simp]:
DataRefinement Loop’ Q4' R2' R2' (demonic Q4")

{proof)

lemma setsimp: a = ¢ = (z € a) = (z € ¢)

(proof )

theorem step3 [simp]:
DataRefinement Loop’ Q4" R2' R2' (demonic Q5")

{proof)

theorem final [simp]:
DataRefinement Loop’ Q5" R2' R1' (demonic Q6")
(proof)

5.6 Diagram data refinement

theorem LinkMark-DataRefinement [simp]:
DgrDataRefinement (dangelic R SetMarkInv) StackMark-rel R’ (dgr-demonic LinkMark-rel)

(proof )

16



5.7 Diagram correctness

theorem LinkMark-correct:
Hoare-dgr (dangelic R’ (dangelic R SetMarkInv)) (dgr-demonic LinkMark-rel)
((dangelic R’ (dangelic R SetMarkInv)) N (— grd (step ((dgr-demonic LinkMark-rel)))))
(proof )

end

end

6 Deutsch-Schorr-Waite Marking Algorithm

theory DSWMark
imports LinkMark
begin

Finally, we construct the Deutsch-Schorr-Waite marking algorithm by as-
suming that there are only two pointers (left, right) from every node. There
is also a new variable, atom : node — bool which associates to every node
a Boolean value. The data invariant of this refinement step requires that
index has exactly two distinct elements none and some, left = link none,
right = link some, and atom x is true if and only if label x = some.

We use a new locale which fixes the iniatial values of the variables left, right,
and atom in left0, right0, and atom(0 respectively.

datatype Index = none | some
locale classical = node +

fixes left0 :: 'node = 'node
fixes right0 :: 'node = 'node

fixes atom0 :: 'mode = bool
assumes (nil::'node) = nil
begin

definition

link0 i = (if i = (none::Index) then left0 else right0)
definition
label0 © = (if atom0 x then (some::Index) else none)

end

sublocale classical C pointer nil root none::Index link0 label(

(proof)

context classical
begin
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lemma [simp]:
(label0 = (X = . if atom z then some else none)) = (atom0 = atom)

{proof)

definition
g9 mrk atom ptr x = ptr x # nil A ptr x ¢ mrk A — atom z

6.1 Transitions

definition
QA1 = X (p, t, left, right, atom, mrk) . {(p’, t', left’, right’, atom’, mrk’) .
root = nil A p’ = nil A t' = nil A mrk’ = mrk A left’ = left A\ right’ =
right A atom’ = atom}

definition
QQ2 = X (p, t, left, right, atom, mrk) . {(p’, t', left’, right’, atom’, mrk’) .
root # nil A p’ = root A t' = nil A mrk’ = mrk U {root} A left’ = left A
right’ = right A atom’ = atom}

definition
QA3 = X (p, t, left, right, atom, mrk) . {(p’, t', left’, right’, atom’, mrk’) .
p # nil A gg mrk atom left p A
p'=leftp ANt'=p A mrk! = mrk U {left p} A
left’ = left(p := t) A right’ = right A atom’ = atom}

definition
QQ4L = X (p, t, left, right, atom, mrk) . {(p’, t', left’, right’, atom’, mrk’) .
p # nil A gg mrk atom right p A
p'=right p AN t'=p A mrk’ = mrk U {right p} A
left’ = left A right’ = right(p := t) A atom’ = atom(p := True)}

definition
QA5 = X (p, t, left, right, atom, mrk) . {(p’, t, left’, right’, atom’, mrk’) .
p # nil A (xnot needed in the proof *)
- gg mrk atom left p A = gg mrk atom right p A
t # nil A = atom t A
p' =t At'=left t AN mrk’ = mrk A
left’ = left(t := p) A right’ = right A atom’ = atom}

definition
QQ6 = X (p, t, left, right, atom, mrk) . {(p’, t', left’, right’, atom’, mrk’) .
p # nil A\ (xnot needed in the proof )
- gg mrk atom left p A = gg mrk atom right p A
t # nil A atom t A
p' =t At'=right t AN mrk’ = mrk A
left’ = left N right’ = right(t := p) A atom’ = atom(t := False)}
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definition
QQ7 = X (p, t, left, right, atom, mrk) . {(p’, t', left’, right’, atom’, mrk’) .
p # nil A
- gg mrk atom left p A = gg mrk atom right p A
t = nil A
p'=nil At'=t AN mrk! = mrk A
left’ = left A right’ = right A atom’ = atom}

definition
QA8 = X (p, t, left, right, atom, mrk) . {(p’, t', left’, right’, atom’, mrk’) .
p=mnil ANp'=pAt=1tANmrk! = mrk A left’ = left N right’ = right A
atom’ = atom}

7 Data refinement relation

definition
RR = X (p, t, left, right, atom, mrk) . {(p’, t', Ink, Ibl, mrk’) .
Ink none = left N\ Ink some = right A
bl = (X z . if atom x then some else none) A
p'=p At =t AN mrk’ = mrk}

definition [simp]:
R" i =RR

definition
ClassicMark-rel = (X (i, 7) . (case (i, j) of
(Linit, I.loop) = QQ1 U QQ2 |
(Lloop, Lloop) = (QQ3 U QQ4) U ((QQ5 U QQ6) U QQ7) |
(I.loop, I.final) = QQS |
-= 1))

7.1 Data refinement of the transitions

theorem init! [simp]:
DataRefinement Init"” Q1" RR RR (demonic QQ1)
(proof)

theorem init2 [simp]:
DataRefinement Init"” Q2" RR RR (demonic QQ2)
(proof )

lemma indez-simp:
(u = v) = (u none = v none A u some = v some)
{proof)

theorem step! [simp]:
DataRefinement Loop” Q3" RR RR (demonic QQ3)
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{proof)

theorem step?2 [simp):
DataRefinement Loop” Q3" RR RR (demonic QQ4)

(proof)

theorem step3 [simp):
DataRefinement Loop”" Q4" RR RR (demonic QQ5)

(proof )

lemma if-set-elim: (x € (if b then A else B)) = (b Az € A)V (- b Az € B))
{proof)

theorem step/ [simp]:
DataRefinement Loop” Q4" RR RR (demonic QQ0)
(proof)

theorem steps [simp):
DataRefinement Loop”” Q5" RR RR (demonic QQ7)

(proof)

theorem final-step [simp]:
DataRefinement Loop”” Q6" RR RR (demonic QQ8)
(proof )

7.2 Diagram data refinement

theorem ClassicMark-DataRefinement [simp]:
DgrDataRefinement (dangelic R’ (dangelic R SetMarkInv)) LinkMark-rel R' (dgr-demonic
ClassicMark-rel)

{proof)

7.3 Diagram corectness

theorem ClassicMark-correct [simp]:

Hoare-dgr (dangelic R"' (dangelic R' (dangelic R SetMarkInv))) (dgr-demonic
ClassicMark-rel)

((dangelic R"" (dangelic R’ (dangelic R SetMarkInv))) M (— grd (step ((dgr-demonic
ClassicMark-rel)))))

{proof)

We have proved the correctness of the final algorithm, but the pre and the
post conditions involve the angelic choice operator and they depend on all
data refinement steps we have used to prove the final diagram. We simplify
these conditions and we show that we obtained indead the corectness of the
marking algorithm.

The predicate ClassicInit which is true for the init situation states that
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initially the variables left, right, and atom are equal to their initial values
and also that no node is marked.

The predicate ClassicFinal which is true for the final situation states that
at the end the values of the variables left, right, and atom are again equal
to their initial values and the variable mrk records all reachable nodes. The
reachable nodes are defined using our initial nezt relation, however if we
unfold all locale interpretations and definitions we see easeily that a node x
is reachable if there is a path from root to x along left and right functions,
and all nodes in this path have the atom bit false.
definition
ClassicInit = {(p, t, left, right, atom, mrk) .
atom = atom0 A left = left0 N right = right0 N
finite (— mrk) A mrk = {}}

definition
ClassicFinal = {(p, t, left, right, atom, mrk) .
atom = atom0 A left = left0 A right = right0 A
mrk = reach root}

theorem [simp]:
ClassicInit C (angelic RR (angelic R1' (angelic R1 (SetMarkInv init))))

{proof)

theorem [simp]:
ClassicInit C (angelic (R init) (angelic (R’ init) (angelic (R init) (SetMarkInv
{proof)

theorem [simp]:
(angelic RR (angelic R1’ (angelic R1 (SetMarkInv final)))) < ClassicFinal
(proof)

theorem [simp]:

(angelic (R final) (angelic (R’ final) (angelic (R final) (SetMarkInv final)))) <
ClassicFinal

(proof)

The indexed predicate ClassicPre is the precondition of the diagram, and
since we are only interested in starting the marking diagram in the init
situation we set ClassicPre loop = ClassicPre final = ().
definition [simp]:
ClassicPre i = (case i of
I.init = ClassicInit |
I.loop = {} |
I.final = {})

We are interested on the other hand that the marking diagram terminates
only in the final situation. In order to achieve this we define the postcondi-
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tion of the diagram as the indexed predicate ClassicPost which is empty on
every situation except final.
definition [simp]:
ClassicPost i = (case i of
Linit = {} |

Iloop = {} |
I.final = ClassicFinal)

definition [simp]:
ClassicMark = dgr-demonic ClassicMark-rel

lemma exists-or:
Fz.pzVvegr)=(3 z.pz)Vv (3 z.qzx))
(proof)

lemma [simp]:
(— grd (step (dgr-demonic ClassicMark-rel))) init = {}
{proof)

lemma [simp]:
(— grd (step (dgr-demonic ClassicMark-rel))) loop = {}
{proof)

The final theorem states the correctness of the marking diagram with respect
to the precondition ClassicPre and the postcondition ClassicPost, that is, if
the diagram starts in the initial situation, then it will terminate in the final
situation, and it will mark all reachable nodes.

theorem = ClassicPre {| pt ClassicMark |} ClassicPost

(proof )
end

end
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