
Cauchy’s Mean Theorem and the Cauchy-Schwarz

Inequality

Benjamin Porter

November 27, 2007

Contents

1 Cauchy’s Mean Theorem 3
1.1 Abstract . 3
1.2 Formal proof . 4

1.2.1 Collection sum and product 4
1.2.2 Auxillary lemma . 7
1.2.3 Mean and GMean . 8
1.2.4 list-neq, list-eq . 10
1.2.5 Element selection . 13
1.2.6 Abstract properties . 15
1.2.7 Existence of a new collection 19
1.2.8 Cauchy’s Mean Theorem 24

2 The Cauchy-Schwarz Inequality 26
2.1 Abstract . 26
2.2 Formal Proof . 26

2.2.1 Vector, Dot and Norm definitions. 26

1

Abstract

This document presents the mechanised proofs of two popular theorems
attributed to Augustin Louis Cauchy - Cauchy’s Mean Theorem and the
Cauchy-Schwarz Inequality.

2

Chapter 1

Cauchy’s Mean Theorem

theory CauchysMeanTheorem
imports Complex-Main
begin

1.1 Abstract

The following document presents a proof of Cauchy’s Mean theorem for-
malised in the Isabelle/Isar theorem proving system.
Theorem: For any collection of positive real numbers the geometric mean is
always less than or equal to the arithmetic mean. In mathematical terms:

n
√

x1x2 . . . xn ≤
x1 + . . . + xn

n

We will use the term mean to denote the arithmetic mean and gmean to
denote the geometric mean.
Informal Proof:
This proof is based on the proof presented in [1]. First we need an auxillary
lemma (the proof of which is presented formally below) that states:
Given two pairs of numbers of equal sum, the pair with the greater product
is the pair with the least difference. Using this lemma we now present the
proof -
Given any collection C of positive numbers with mean M and product P
and with some element not equal to M we can choose two elements from the
collection, a and b where a > M and b < M . Remove these elements from
the collection and replace them with two new elements, a′ and b′ such that
a′ = M and a′ +b′ = a+b. This new collection C ′ now has a greater product
P ′ but equal mean with respect to C. We can continue in this fashion until
we have a collection Cn such that Pn > P and Mn = M , but Cn has all its
elements equal to M and thus Pn = Mn. Using the definition of geometric
and arithmetic means above we can see that for any collection of positive

3

CHAPTER 1. CAUCHY’S MEAN THEOREM 4

elements E it is always true that gmean E ≤ mean E. QED.
[1] Dorrie, H. ”100 Great Problems of Elementary Mathematics.” 1965,
Dover.

1.2 Formal proof

1.2.1 Collection sum and product

The finite collections of numbers will be modelled as lists. We then define
sum and product operations over these lists.

Sum and product definitions

definition
listsum :: (real list) ⇒ real (

∑
:- [999] 1000) where

listsum xs = foldr op+ xs 0

definition
listprod :: (real list) ⇒ real (

∏
:- [999] 1000) where

listprod xs = foldr op∗ xs 1

lemma listsum-empty [simp]:
∑

:[] = 0
unfolding listsum-def by simp

lemma listsum-cons [simp]:
∑

:(a#b) = a +
∑

:b
unfolding listsum-def by (induct b) simp-all

lemma listprod-empty [simp]:
∏

:[] = 1
unfolding listprod-def by simp

lemma listprod-cons [simp]:
∏

:(a#b) = a ∗
∏

:b
unfolding listprod-def by (induct b) simp-all

Properties of sum and product

We now present some useful properties of sum and product over collections.

These lemmas just state that if all the elements in a collection C are less
(greater than) than some value m, then the sum will less than (greater than)
m ∗ length(C).

lemma listsum-mono-lt [rule-format]:
fixes xs::real list
shows xs 6= [] ∧ (∀ x∈ set xs. x < m)

−→ ((
∑

:xs) < (m∗(real (length xs))))
proof (induct xs)
case Nil show ?case by simp

next

CHAPTER 1. CAUCHY’S MEAN THEOREM 5

case (Cons y ys)
{
assume ant : y#ys 6= [] ∧ (∀ x∈set(y#ys). x < m)
hence ylm: y < m by simp
have

∑
:(y#ys) < m ∗ real (length (y#ys))

proof cases
assume ys 6= []
moreover with ant have ∀ x∈set ys. x < m by simp
moreover with calculation Cons have

∑
:ys < m∗real (length ys) by simp

hence
∑

:ys + y < m∗real(length ys) + y by simp
with ylm have

∑
:(y#ys) < m∗(real(length ys) + 1) by(simp add :ring-simps)

with real-of-nat-Suc have
∑

:(y#ys) < m∗(real(length ys + 1))
apply −
apply (drule meta-spec [of - length ys])
apply (subst(asm) eq-sym-conv)
by simp

hence
∑

:(y#ys) < m∗(real (length(y#ys))) by simp
thus ?thesis .

next
assume ¬ (ys 6= [])
hence ys = [] by simp
with ylm show ?thesis by simp

qed
}
thus ?case by simp

qed

lemma listsum-mono-gt [rule-format]:
fixes xs::real list
shows xs 6= [] ∧ (∀ x∈set xs. x > m)

−→ ((
∑

:xs) > (m∗(real (length xs))))

proof omitted

qed

If a is in C then the sum of the collection D where D is C with a removed
is the sum of C minus a.

lemma listsum-rmv1 :
a ∈ set xs =⇒

∑
:(remove1 a xs) =

∑
:xs − a

by (induct xs) auto

A handy addition and division distribution law over collection sums.

lemma list-sum-distrib-aux :
shows (

∑
:xs/n +

∑
:xs) = (1 + (1/n)) ∗

∑
:xs

proof (induct xs)
case Nil show ?case by simp

next
case (Cons x xs)

CHAPTER 1. CAUCHY’S MEAN THEOREM 6

show ?case
proof −
have∑

:(x#xs)/n = x/n +
∑

:xs/n
by (simp add : add-divide-distrib)

also with Cons have
. . . = x/n + (1+1/n)∗

∑
:xs −

∑
:xs

by simp
finally have∑

:(x#xs) / n +
∑

:(x#xs) = x/n + (1+1/n)∗
∑

:xs −
∑

:xs +
∑

:(x#xs)
by simp

also have
. . . = x/n + (1+(1/n)− 1)∗

∑
:xs +

∑
:(x#xs)

by (subst real-mult-1 [symmetric, of
∑

:xs], simp only : ring-simps)
also have

. . . = x/n + (1/n)∗
∑

:xs +
∑

:(x#xs)
by simp

also have
. . . = (1/n)∗

∑
:(x#xs) + 1∗

∑
:(x#xs) by(simp add :ring-simps)

finally show ?thesis by (simp only : ring-simps)
qed

qed

lemma remove1-retains-prod :
fixes a::real and xs::real list
shows a : set xs −→

∏
:xs =

∏
:(remove1 a xs) ∗ a

(is ?P xs)
proof (induct xs)
case Nil
show ?case by simp

next
case (Cons aa list)
assume plist : ?P list
show ?P (aa#list)
proof
assume aml : a : set(aa#list)
show

∏
:(aa # list) =

∏
:remove1 a (aa # list) ∗ a

proof (cases)
assume aeq : a = aa
hence

remove1 a (aa#list) = list
by simp

hence∏
:(remove1 a (aa#list)) =

∏
:list

by simp
moreover with aeq have∏

:(aa#list) =
∏

:list ∗ a
by simp

ultimately show

CHAPTER 1. CAUCHY’S MEAN THEOREM 7

∏
:(aa#list) =

∏
:remove1 a (aa # list) ∗ a

by simp
next
assume naeq : a 6= aa
with aml have aml2 : a : set list by simp
from naeq have

remove1 a (aa#list) = aa#(remove1 a list)
by simp

moreover hence∏
:(remove1 a (aa#list)) = aa ∗

∏
:(remove1 a list)

by simp
moreover from aml2 plist have∏

:list =
∏

:(remove1 a list) ∗ a
by simp

ultimately show∏
:(aa#list) =

∏
:remove1 a (aa # list) ∗ a

by simp
qed

qed
qed

The final lemma of this section states that if all elements are positive and
non-zero then the product of these elements is also positive and non-zero.

lemma el-gt0-imp-prod-gt0 [rule-format]:
fixes xs::real list
shows ∀ y . y : set xs −→ y > 0 =⇒

∏
:xs > 0

proof (induct xs)
case Nil show ?case by simp

next
case (Cons a xs)
have exp:

∏
:(a#xs) =

∏
:xs ∗ a by simp

with Cons have a > 0 by simp
with exp Cons show ?case by (simp add : mult-pos-pos)

qed

1.2.2 Auxillary lemma

This section presents a proof of the auxillary lemma required for this theo-
rem.

lemma prod-exp:
fixes x ::real
shows 4∗(x∗y) = (x+y)ˆ2 − (x−y)ˆ2

apply (simp only : diff-minus)
apply (simp add : real-sum-squared-expand)
done

lemma abs-less-imp-sq-less [rule-format]:
fixes x ::real and y ::real and z ::real and w ::real

CHAPTER 1. CAUCHY’S MEAN THEOREM 8

assumes diff : abs (x−y) < abs (z−w)
shows (x−y)ˆ2 < (z−w)ˆ2

proof cases
assume x=y
hence abs (x−y) = 0 by simp
moreover with diff have abs(z−w) > 0 by simp
hence (z−w)ˆ2 > 0 by simp
ultimately show ?thesis by auto

next
assume x 6=y
hence abs (x − y) > 0 by simp
with diff have (abs (x−y))ˆ2 < (abs (z−w))ˆ2

by − (drule power-strict-mono [where a=abs (x−y) and n=2 and b=abs
(z−w)], auto)
thus ?thesis by simp

qed

The required lemma (phrased slightly differently than in the informal proof.)
Here we show that for any two pairs of numbers with equal sums the pair
with the least difference has the greater product.

lemma le-diff-imp-gt-prod [rule-format]:
fixes x ::real and y ::real and z ::real and w ::real
assumes diff : abs (x−y) < abs (z−w) and sum: x+y = z+w
shows x∗y > z∗w

proof −
from sum have (x+y)ˆ2 = (z+w)ˆ2 by simp
moreover from diff have (x−y)ˆ2 < (z−w)ˆ2 by (rule abs-less-imp-sq-less)
ultimately have (x+y)ˆ2 − (x−y)ˆ2 > (z+w)ˆ2 − (z−w)ˆ2 by auto
thus x∗y > z∗w by (simp only : prod-exp [symmetric])

qed

1.2.3 Mean and GMean

Now we introduce definitions and properties of arithmetic and geometric
means over collections of real numbers.

Definitions

Arithmetic mean

definition
mean :: (real list)⇒real where
mean s = (

∑
:s / real (length s))

Geometric mean

definition
gmean :: (real list)⇒real where
gmean s = root (length s) (

∏
:s)

CHAPTER 1. CAUCHY’S MEAN THEOREM 9

Properties

Here we present some trival properties of mean and gmean.

lemma list-sum-mean:
fixes xs::real list
shows

∑
:xs = ((mean xs) ∗ (real (length xs)))

apply (induct-tac xs)
apply simp
apply clarsimp
apply (unfold mean-def)
apply clarsimp
done

lemma list-mean-eq-iff :
fixes one::real list and two::real list
assumes

se: (
∑

:one =
∑

:two) and
le: (length one = length two)

shows (mean one = mean two)
proof −
from se le have

(
∑

:one / real (length one)) = (
∑

:two / real (length two))
by auto

thus ?thesis unfolding mean-def .
qed

lemma list-gmean-gt-iff :
fixes one::real list and two::real list
assumes

gz1 :
∏

:one > 0 and gz2 :
∏

:two > 0 and
ne1 : one 6= [] and ne2 : two 6= [] and
pe: (

∏
:one >

∏
:two) and

le: (length one = length two)
shows (gmean one > gmean two)
unfolding gmean-def
using le ne2 pe by simp

This slightly more complicated lemma shows that for every non-empty col-
lection with mean M , adding another element a where a = M results in a
new list with the same mean M .

lemma list-mean-cons [rule-format]:
fixes xs::real list
shows xs 6= [] −→ mean ((mean xs)#xs) = mean xs

proof
assume lne: xs 6= []
obtain len where ld : len = real (length xs) by simp
with lne have lgt0 : len > 0 by simp
hence lnez : len 6= 0 by simp
from lgt0 have l1nez : len + 1 6= 0 by simp

CHAPTER 1. CAUCHY’S MEAN THEOREM 10

from ld have mean: mean xs =
∑

:xs / len unfolding mean-def by simp
with ld real-of-nat-add real-of-one mean-def
have mean ((mean xs)#xs) = (

∑
:xs/len +

∑
:xs) / (1+len)

by simp
also from list-sum-distrib-aux have

. . . = (1 + (1/len))∗
∑

:xs / (1+len) by simp
also with lnez have

. . . = (len + 1)∗
∑

:xs / (len ∗ (1+len))
apply −
apply (drule mult-divide-mult-cancel-left

[symmetric, where c=len and a=(1 + 1 / len) ∗
∑

:xs and b=1+len])
apply (clarsimp simp:ring-simps)
done

also from l1nez have . . . =
∑

:xs / len
apply (subst real-mult-commute [where z=len])
apply (drule mult-divide-mult-cancel-left

[where c=len+1 and a=
∑

:xs and b=len])
by (simp add : mult-ac add-ac)

finally show mean ((mean xs)#xs) = mean xs by (simp add : mean)
qed

For a non-empty collection with positive mean, if we add a positive number
to the collection then the mean remains positive.

lemma mean-gt-0 [rule-format]:
xs 6=[] ∧ 0 < x ∧ 0 < (mean xs) −→ 0 < (mean (x#xs))

proof
assume a: xs 6= [] ∧ 0 < x ∧ 0 < mean xs
hence xgt0 : 0 < x and mgt0 : 0 < mean xs by auto
from a have lxsgt0 : length xs 6= 0 by simp
from mgt0 have xsgt0 : 0 <

∑
:xs

proof −
have mean xs =

∑
:xs / real (length xs) unfolding mean-def by simp

hence
∑

:xs = mean xs ∗ real (length xs) by simp
moreover from lxsgt0 have real (length xs) > 0 by simp
moreover with calculation lxsgt0 mgt0 real-mult-order show ?thesis by auto

qed
with xgt0 have

∑
:(x#xs) > 0 by simp

thus 0 < (mean (x#xs))
proof −
assume 0 <

∑
:(x#xs)

moreover have real (length (x#xs)) > 0 by simp
ultimately show ?thesis unfolding mean-def by (rule divide-pos-pos)

qed
qed

1.2.4 list-neq, list-eq

This section presents a useful formalisation of the act of removing all the
elements from a collection that are equal (not equal) to a particular value.

CHAPTER 1. CAUCHY’S MEAN THEOREM 11

We use this to extract all the non-mean elements from a collection as is
required by the proof.

Definitions

list-neq and list-eq just extract elements from a collection that are not equal
(or equal) to some value.

abbreviation
list-neq :: (′a list) ⇒ ′a ⇒ (′a list) where
list-neq xs el == filter (λx . x 6=el) xs

abbreviation
list-eq :: (′a list) ⇒ ′a ⇒ (′a list) where
list-eq xs el == filter (λx . x=el) xs

Properties

This lemma just proves a required fact about list-neq, remove1 and length.

lemma list-neq-remove1 [rule-format]:
shows a 6=m ∧ a : set xs
−→ length (list-neq (remove1 a xs) m) < length (list-neq xs m)
(is ?A xs −→ ?B xs is ?P xs)

proof (induct xs)
case Nil show ?case by simp

next
case (Cons x xs)
note 〈?P xs〉

{
assume a: ?A (x#xs)
hence

a-ne-m: a 6=m and
a-mem-x-xs: a : set(x#xs)
by auto

have b: ?B (x#xs)
proof cases
assume xs = []
with a-ne-m a-mem-x-xs show ?thesis
apply (cases x=a)
by auto

next
assume xs-ne: xs 6= []
with a-ne-m a-mem-x-xs show ?thesis
proof cases
assume a=x with a-ne-m show ?thesis by simp

next
assume a-ne-x : a 6=x
with a-mem-x-xs have a-mem-xs: a : set xs by simp

CHAPTER 1. CAUCHY’S MEAN THEOREM 12

with xs-ne a-ne-m Cons have
rel : length (list-neq (remove1 a xs) m) < length (list-neq xs m)
by simp

show ?thesis
proof cases
assume x-e-m: x=m
with Cons xs-ne a-ne-m a-mem-xs show ?thesis by simp

next
assume x-ne-m: x 6=m
from a-ne-x have

remove1 a (x#xs) = x#(remove1 a xs)
by simp

hence
length (list-neq (remove1 a (x#xs)) m) =
length (list-neq (x#(remove1 a xs)) m)
by simp

also with x-ne-m have
. . . = 1 + length (list-neq (remove1 a xs) m)
by simp

finally have
length (list-neq (remove1 a (x#xs)) m) =
1 + length (list-neq (remove1 a xs) m)
by simp

moreover with x-ne-m a-ne-x have
length (list-neq (x#xs) m) =
1 + length (list-neq xs m)
by simp

moreover with rel show ?thesis by simp
qed

qed
qed

}
thus ?P (x#xs) by simp

qed

We now prove some facts about list-eq, list-neq, length, sum and product.

lemma list-eq-sum [simp]:
fixes xs::real list
shows

∑
:(list-eq xs m) = (m ∗ (real (length (list-eq xs m))))

apply (induct-tac xs)
apply simp
apply clarsimp
apply (subst real-of-nat-Suc)
apply (simp add :ring-simps)
done

lemma list-eq-prod [simp]:
fixes xs::real list
shows

∏
:(list-eq xs m) = (m ˆ (length (list-eq xs m)))

CHAPTER 1. CAUCHY’S MEAN THEOREM 13

apply (induct-tac xs)
apply simp
apply clarsimp
done

lemma listsum-split :
fixes xs::real list
shows

∑
:xs = (

∑
:(list-neq xs m) +

∑
:(list-eq xs m))

apply (induct xs)
apply simp
apply clarsimp
done

lemma listprod-split :
fixes xs::real list
shows

∏
:xs = (

∏
:(list-neq xs m) ∗

∏
:(list-eq xs m))

apply (induct xs)
apply simp
apply clarsimp
done

lemma listsum-length-split :
fixes xs::real list
shows length xs = length (list-neq xs m) + length (list-eq xs m)

apply (induct xs)
apply simp+
done

1.2.5 Element selection

We now show that given after extracting all the elements not equal to the
mean there exists one that is greater then (or less than) the mean.

lemma pick-one-gt :
fixes xs::real list and m::real
defines m: m ≡ (mean xs) and neq : noteq ≡ list-neq xs m
assumes asum: noteq 6=[]
shows ∃ e. e : set noteq ∧ e > m

proof (rule ccontr)
let ?m = (mean xs)
let ?neq = list-neq xs ?m
let ?eq = list-eq xs ?m
from list-eq-sum have (

∑
:?eq) = ?m ∗ (real (length ?eq)) by simp

from asum have neq-ne: ?neq 6= [] unfolding m neq .
assume not-el : ¬(∃ e. e : set noteq ∧ m < e)
hence not-el-exp: ¬(∃ e. e : set ?neq ∧ ?m < e) unfolding m neq .
hence ∀ e. ¬(e : set ?neq) ∨ ¬(e > ?m) by simp
hence ∀ e. e : set ?neq −→ ¬(e > ?m) by blast
hence ∀ e. e : set ?neq −→ e ≤ ?m by (simp add : linorder-not-less)
hence ∀ e. e : set ?neq −→ e < ?m by (simp add :order-le-less)

CHAPTER 1. CAUCHY’S MEAN THEOREM 14

with prems listsum-mono-lt have (
∑

:?neq) < ?m ∗ (real (length ?neq)) by blast
hence

(
∑

:?neq) + (
∑

:?eq) < ?m ∗ (real (length ?neq)) + (
∑

:?eq) by simp
also have

. . . = (?m ∗ ((real (length ?neq) + (real (length ?eq)))))
by (simp add :ring-simps)

also have
. . . = (?m ∗ (real (length xs)))
apply (subst real-of-nat-add [symmetric])
by (simp add : listsum-length-split [symmetric])

also have
. . . =

∑
:xs

by (simp add : list-sum-mean [symmetric])
also from not-el calculation show False by (simp only : listsum-split [symmetric])

qed

lemma pick-one-lt :
fixes xs::real list and m::real
defines m: m ≡ (mean xs) and neq : noteq ≡ list-neq xs m
assumes asum: noteq 6=[]
shows ∃ e. e : set noteq ∧ e < m

proof (rule ccontr) — reductio ad absurdum
let ?m = (mean xs)
let ?neq = list-neq xs ?m
let ?eq = list-eq xs ?m
from list-eq-sum have (

∑
:?eq) = ?m ∗ (real (length ?eq)) by simp

from asum have neq-ne: ?neq 6= [] unfolding m neq .
assume not-el : ¬(∃ e. e : set noteq ∧ m > e)
hence not-el-exp: ¬(∃ e. e : set ?neq ∧ ?m > e) unfolding m neq .
hence ∀ e. ¬(e : set ?neq) ∨ ¬(e < ?m) by simp
hence ∀ e. e : set ?neq −→ ¬(e < ?m) by blast
hence ∀ e. e : set ?neq −→ e ≥ ?m by (simp add : linorder-not-less)
hence ∀ e. e : set ?neq −→ e > ?m by (auto simp: order-le-less)
with prems listsum-mono-gt have (

∑
:?neq) > ?m ∗ (real (length ?neq)) by

blast
hence

(
∑

:?neq) + (
∑

:?eq) > ?m ∗ (real (length ?neq)) + (
∑

:?eq) by simp
also have

(?m ∗ (real (length ?neq)) + (
∑

:?eq)) =
(?m ∗ (real (length ?neq)) + (?m ∗ (real (length ?eq))))
by simp

also have
. . . = (?m ∗ ((real (length ?neq) + (real (length ?eq)))))
by (simp add :ring-simps)

also have
. . . = (?m ∗ (real (length xs)))
apply (subst real-of-nat-add [symmetric])
by (simp add : listsum-length-split [symmetric])

also have

CHAPTER 1. CAUCHY’S MEAN THEOREM 15

. . . =
∑

:xs
by (simp add : list-sum-mean [symmetric])

also from not-el calculation show False by (simp only : listsum-split [symmetric])
qed

1.2.6 Abstract properties

In order to maintain some comprehension of the following proofs we now
introduce some properties of collections.

Definitions

het: The heterogeneity of a collection is the number of elements not equal
to its mean. A heterogeneity of zero implies the all the elements in the
collection are the same (i.e. homogeneous).

definition
het :: real list ⇒ nat where
het l = length (list-neq l (mean l))

lemma het-gt-0-imp-noteq-ne: het l > 0 =⇒ list-neq l (mean l) 6= []
unfolding het-def by simp

γ−eq : Two lists are γ-equivalent if and only if they both have the same
number of elements and the same arithmetic means.

definition
γ-eq :: ((real list)∗(real list)) ⇒ bool where
γ-eq a ←→ mean (fst a) = mean (snd a) ∧ length (fst a) = length (snd a)

γ-eq is transitive and symmetric.

lemma γ-eq-sym: γ-eq (a,b) = γ-eq (b,a)
unfolding γ-eq-def by auto

lemma γ-eq-trans:
γ-eq (x ,y) =⇒ γ-eq (y ,z) =⇒ γ-eq (x ,z)
unfolding γ-eq-def by simp

pos: A list is positive if all its elements are greater than 0.

definition
pos :: real list ⇒ bool where
pos l ←→ (if l=[] then False else ∀ e. e : set l −→ e > 0)

lemma pos-empty [simp]: pos [] = False unfolding pos-def by simp
lemma pos-single [simp]: pos [x] = (x > 0) unfolding pos-def by simp
lemma pos-imp-ne: pos xs =⇒ xs 6=[] unfolding pos-def by auto

lemma pos-cons [simp]:
xs 6= [] −→ pos (x#xs) =

CHAPTER 1. CAUCHY’S MEAN THEOREM 16

(if (x>0) then pos xs else False)
(is ?P x xs is ?A xs −→ ?S x xs)

proof (simp add : split-if , rule impI)
assume xsne: xs 6= []
hence pxs-simp:

pos xs = (∀ e. e : set xs −→ e > 0)
unfolding pos-def by simp

show
(0 < x −→ pos (x # xs) = pos xs) ∧
(¬ 0 < x −→ ¬ pos (x # xs))

proof
{
assume xgt0 : 0 < x
{
assume pxs: pos xs
with pxs-simp have ∀ e. e : set xs −→ e > 0 by simp
with xgt0 have ∀ e. e : set (x#xs) −→ e > 0 by simp
hence pos (x#xs) unfolding pos-def by simp

}
moreover
{
assume pxxs: pos (x#xs)
hence ∀ e. e : set (x#xs) −→ e > 0 unfolding pos-def by simp
hence ∀ e. e : set xs −→ e > 0 by simp
with xsne have pos xs unfolding pos-def by simp

}
ultimately have pos (x # xs) = pos xs
apply −
apply (rule iffI)
apply auto
done

}
thus 0 < x −→ pos (x # xs) = pos xs by simp

next
{
assume xngt0 : ¬ (0<x)
{
assume pxs: pos xs
with pxs-simp have ∀ e. e : set xs −→ e > 0 by simp
with xngt0 have ¬ (∀ e. e : set (x#xs) −→ e > 0) by auto
hence ¬ (pos (x#xs)) unfolding pos-def by simp

}
moreover
{
assume pxxs: ¬pos xs
with xsne have ¬ (∀ e. e : set xs −→ e > 0) unfolding pos-def by simp
hence ¬ (∀ e. e : set (x#xs) −→ e > 0) by auto
hence ¬ (pos (x#xs)) unfolding pos-def by simp

}

CHAPTER 1. CAUCHY’S MEAN THEOREM 17

ultimately have ¬ pos (x#xs) by auto
}
thus ¬ 0 < x −→ ¬ pos (x # xs) by simp

qed
qed

Properties

Here we prove some non-trivial properties of the abstract properties.

Two lemmas regarding pos. The first states the removing an element from a
positive collection (of more than 1 element) results in a positive collection.
The second asserts that the mean of a positive collection is positive.

lemma pos-imp-rmv-pos:
assumes (remove1 a xs)6=[] pos xs shows pos (remove1 a xs)

proof −
from assms have pl : pos xs and rmvne: (remove1 a xs)6=[] by auto
from pl have xs 6= [] by (rule pos-imp-ne)
with pl pos-def have ∀ x . x : set xs −→ x > 0 by simp
hence ∀ x . x : set (remove1 a xs) −→ x > 0
using set-remove1-subset [of - xs] by(blast)

with rmvne show pos (remove1 a xs) unfolding pos-def by simp
qed

lemma pos-mean: pos xs =⇒ mean xs > 0
proof (induct xs)
case Nil thus ?case by(simp add : pos-def)

next
case (Cons x xs)
show ?case
proof cases
assume xse: xs = []
hence pos (x#xs) = (x > 0) by simp
with Cons(2) have x>0 by(simp)
with xse have 0 < mean (x#xs) by(auto simp:mean-def)
thus ?thesis by simp

next
assume xsne: xs 6= []
show ?thesis
proof cases
assume pxs: pos xs
with Cons(1) have z-le-mxs: 0 < mean xs by(simp)
{
assume ass: x > 0
with ass z-le-mxs xsne have 0 < mean (x#xs)
apply −
apply (rule mean-gt-0)
by simp

}

CHAPTER 1. CAUCHY’S MEAN THEOREM 18

moreover
{
from xsne pxs have 0 < x
proof cases
assume 0 < x thus ?thesis by simp

next
assume ¬(0 < x)
with xsne pos-cons have pos (x#xs) = False by simp
with Cons(2) show ?thesis by simp

qed
}
ultimately have 0 < mean (x#xs) by simp
thus ?thesis by simp

next
assume npxs: ¬pos xs
with xsne pos-cons have pos (x#xs) = False by simp
thus ?thesis using Cons(2) by simp

qed
qed

qed

We now show that homogeneity of a non-empty collection x implies that its
product is equal to (mean x)ˆ(length x).

lemma listprod-het0 :
shows x 6=[] ∧ het x = 0 =⇒

∏
:x = (mean x) ˆ (length x)

proof −
assume x 6=[] ∧ het x = 0
hence xne: x 6=[] and hetx : het x = 0 by auto
from hetx have lz : length (list-neq x (mean x)) = 0 unfolding het-def .
hence

∏
:(list-neq x (mean x)) = 1 by simp

with listprod-split have
∏

:x =
∏

:(list-eq x (mean x))
apply −
apply (drule meta-spec [of - x])
apply (drule meta-spec [of - mean x])
by simp

also with list-eq-prod have
. . . = (mean x) ˆ (length (list-eq x (mean x))) by simp

also with calculation lz listsum-length-split have∏
:x = (mean x) ˆ (length x)

apply −
apply (drule meta-spec [of - x])
apply (drule meta-spec [of - mean x])
by simp

thus ?thesis by simp
qed

Furthermore we present an important result - that a homogeneous collection
has equal geometric and arithmetic means.

lemma het-base:

CHAPTER 1. CAUCHY’S MEAN THEOREM 19

shows pos x ∧ x 6=[] ∧ het x = 0 =⇒ gmean x = mean x
proof −
assume ass: pos x ∧ x 6=[] ∧ het x = 0
hence

xne: x 6=[] and
hetx : het x = 0 and
posx : pos x
by auto

from posx pos-mean have mxgt0 : mean x > 0 by simp
from xne have lxgt0 : length x > 0 by simp
with ass listprod-het0 have

root (length x) (
∏

:x) = root (length x) ((mean x)ˆ(length x))
by simp

also from lxgt0 mxgt0 real-root-power-cancel have . . . = mean x by auto
finally show gmean x = mean x unfolding gmean-def .

qed

1.2.7 Existence of a new collection

We now present the largest and most important proof in this document.
Given any positive and non-homogeneous collection of real numbers there
exists a new collection that is γ-equivalent, positive, has a strictly lower
heterogeneity and a greater geometric mean.

lemma new-list-gt-gmean:
fixes xs::real list and m::real
defines

m: m ≡ (mean xs) and
neq : noteq ≡ list-neq xs m and
eq : eq ≡ list-eq xs m

assumes pos-xs: pos xs and het-gt-0 : het xs > 0
shows
∃ xs ′. gmean xs ′ > gmean xs ∧ γ-eq (xs ′,xs) ∧

het xs ′ < het xs ∧ pos xs ′

proof −
from pos-xs pos-imp-ne have

pos-els: ∀ y . y : set xs −→ y > 0 by (unfold pos-def , simp)
with el-gt0-imp-prod-gt0 have pos-asm:

∏
:xs > 0 by simp

from neq het-gt-0 het-gt-0-imp-noteq-ne m have
neqne: noteq 6= [] by simp

Pick two elements from xs, one greater than m, one less than m.

from prems pick-one-gt neqne obtain α where
α-def : α : set noteq ∧ α > m unfolding neq m by auto

from prems pick-one-lt neqne obtain β where
β-def : β : set noteq ∧ β < m unfolding neq m by auto

from α-def β-def have α-gt : α > m and β-lt : β < m by auto
from prems have el-neq : β 6= α by simp
from neqne neq have xsne: xs 6= [] by auto

CHAPTER 1. CAUCHY’S MEAN THEOREM 20

from prems have βmem: β : set xs by (auto simp: neq)
from prems have αmem: α : set xs by (auto simp: neq)

from pos-xs pos-def xsne αmem βmem α-def β-def have
α-pos: α > 0 and β-pos: β > 0 by auto

— remove these elements from xs, and insert two new elements
obtain left-over where lo: left-over = (remove1 β (remove1 α xs)) by simp
obtain b where bdef : m + b = α + β
by (drule meta-spec [of - α + β − m], simp)

from m pos-xs pos-def pos-mean have m-pos: m > 0 by simp
with bdef α-pos β-pos α-gt β-lt have b-pos: b > 0 by simp

obtain new-list where nl : new-list = m#b#(left-over) by auto

from el-neq βmem αmem have β : set xs ∧ α : set xs ∧ β 6= α by simp
hence α : set (remove1 β xs) ∧ β : set(remove1 α xs) by (auto simp add :

in-set-remove1)
moreover hence (remove1 α xs) 6= [] ∧ (remove1 β xs) 6= [] by (auto)
ultimately have

mem : α : set(remove1 β xs) ∧ β : set(remove1 α xs) ∧
(remove1 α xs) 6= [] ∧ (remove1 β xs) 6= [] by simp

— prove that new list is positive
from nl have nl-pos: pos new-list
proof cases
assume left-over = []
with nl b-pos m-pos show ?thesis by simp

next
assume lone: left-over 6= []
from mem pos-imp-rmv-pos pos-xs have pos (remove1 α xs) by simp
with lo lone pos-imp-rmv-pos have pos left-over by simp
with lone mem nl m-pos b-pos show ?thesis by simp

qed

— now show that the new list has the same mean as the old list
with mem prems lo bdef αmem βmem
have

∑
:new-list =

∑
:xs

apply clarsimp
apply (subst listsum-rmv1)
apply simp

apply (subst listsum-rmv1)
apply simp

apply clarsimp
done

moreover from lo nl βmem αmem mem have
leq : length new-list = length xs
apply −

CHAPTER 1. CAUCHY’S MEAN THEOREM 21

apply (erule conjE)+
apply (clarsimp)
apply (subst length-remove1 , simp)
apply (simp add : length-remove1)
apply (auto dest !:length-pos-if-in-set)
done

ultimately have eq-mean: mean new-list = mean xs by (rule list-mean-eq-iff)

— finally show that the new list has a greater gmean than the old list
have gt-gmean: gmean new-list > gmean xs
proof −
from bdef α-gt β-lt have abs (m − b) < abs (α − β) by arith
moreover from bdef have m+b = α+β .
ultimately have mb-gt-gt : m∗b > α∗β by (rule le-diff-imp-gt-prod)
moreover from nl have∏

:new-list =
∏

:left-over ∗ (m∗b) by auto
moreover
from lo αmem βmem mem remove1-retains-prod have

xsprod :
∏

:xs =
∏

:left-over ∗ (α∗β) by auto
moreover from xsne have

xs 6= [] .
moreover from nl have

nlne: new-list 6= [] by simp
moreover from pos-asm lo have∏

:left-over > 0
proof −
from pos-asm have

∏
:xs > 0 .

moreover
from xsprod have

∏
:xs =

∏
:left-over ∗ (α∗β) .

ultimately have
∏

:left-over ∗ (α∗β) > 0 by simp
moreover
from pos-els αmem βmem have α > 0 and β > 0 by auto
hence α∗β > 0 by (rule real-mult-order)
ultimately show

∏
:left-over > 0

apply −
apply (rule zero-less-mult-pos2 [where a=(α ∗ β)])
by auto

qed
ultimately have

∏
:new-list >

∏
:xs

apply clarsimp
apply (rule real-mult-less-mono2)
apply assumption
apply assumption
done

moreover with pos-asm nl have
∏

:new-list > 0 by auto
moreover from calculation pos-asm xsne nlne leq list-gmean-gt-iff
show gmean new-list > gmean xs by simp

qed

CHAPTER 1. CAUCHY’S MEAN THEOREM 22

— auxillary info
from β-lt have β-ne-m: β 6= m by simp
from mem have

β-mem-rmv-α: β : set (remove1 α xs) and rmv-α-ne: (remove1 α xs) 6= [] by
auto

from α-def have α-ne-m: α 6= m by simp

— now show that new list is more homogeneous
have lt-het : het new-list < het xs
proof cases
assume bm: b=m
with het-def have

het new-list = length (list-neq new-list (mean new-list))
by simp

also with m nl eq-mean have
. . . = length (list-neq (m#b#(left-over)) m)
by simp

also with bm have
. . . = length (list-neq left-over m)
by simp

also with lo β-def α-def have
. . . = length (list-neq (remove1 β (remove1 α xs)) m)
by simp

also from β-ne-m β-mem-rmv-α rmv-α-ne have
. . . < length (list-neq (remove1 α xs) m)
apply −
apply (rule list-neq-remove1)
by simp

also from αmem α-ne-m xsne have
. . . < length (list-neq xs m)
apply −
apply (rule list-neq-remove1)
by simp

also with m het-def have . . . = het xs by simp
finally show het new-list < het xs .

next
assume bnm: b 6=m
with het-def have

het new-list = length (list-neq new-list (mean new-list))
by simp

also with m nl eq-mean have
. . . = length (list-neq (m#b#(left-over)) m)
by simp

also with bnm have
. . . = length (b#(list-neq left-over m))
by simp

also have
. . . = 1 + length (list-neq left-over m)

CHAPTER 1. CAUCHY’S MEAN THEOREM 23

by simp
also with lo β-def α-def have

. . . = 1 + length (list-neq (remove1 β (remove1 α xs)) m)
by simp

also from β-ne-m β-mem-rmv-α rmv-α-ne have
. . . < 1 + length (list-neq (remove1 α xs) m)
apply −
apply (simp only : nat-add-left-cancel-less)
apply (rule list-neq-remove1)
by simp

finally have
het new-list ≤ length (list-neq (remove1 α xs) m)
by simp

also from αmem α-ne-m xsne have . . . < length (list-neq xs m)
apply −
apply (rule list-neq-remove1)
by simp

also with m het-def have . . . = het xs by simp
finally show het new-list < het xs .

qed

— thus thesis by existence of newlist
from γ-eq-def lt-het gt-gmean eq-mean leq nl-pos show ?thesis by auto

qed

Furthermore we show that for all non-homogeneous positive collections there
exists another collection that is γ-equivalent, positive, has a greater geomet-
ric mean and is homogeneous.

lemma existence-of-het0 [rule-format]:
shows ∀ x . p = het x ∧ p > 0 ∧ pos x −→
(∃ y . gmean y > gmean x ∧ γ-eq (x ,y) ∧ het y = 0 ∧ pos y)
(is ?Q p is ∀ x . (?A x p −→ ?S x))

proof (induct p rule: nat-less-induct)
fix n
assume ind : ∀m<n. ?Q m
{
fix x
assume ass: ?A x n
hence het x > 0 and pos x by auto
with new-list-gt-gmean have
∃ y . gmean y > gmean x ∧ γ-eq (x ,y) ∧ het y < het x ∧ pos y
apply −
apply (drule meta-spec [of - x])
apply (drule meta-mp)
apply assumption

apply (drule meta-mp)
apply assumption

apply (subst(asm) γ-eq-sym)
apply simp

CHAPTER 1. CAUCHY’S MEAN THEOREM 24

done
then obtain β where

βdef : gmean β > gmean x ∧ γ-eq (x ,β) ∧ het β < het x ∧ pos β ..
then obtain b where bdef : b = het β by simp
with ass βdef have b < n by auto
with ind have ?Q b by simp
with βdef have

ind2 : b = het β ∧ 0 < b ∧ pos β −→
(∃ y . gmean β < gmean y ∧ γ-eq (β, y) ∧ het y = 0 ∧ pos y) by simp

{
assume ¬(0<b)
hence b=0 by simp
with bdef have het β = 0 by simp
with βdef have ?S x by auto

}
moreover
{
assume 0 < b
with bdef ind2 βdef have ?S β by simp
then obtain γ where

gmean β < gmean γ ∧ γ-eq (β, γ) ∧ het γ = 0 ∧ pos γ ..
with βdef have gmean x < gmean γ ∧ γ-eq (x ,γ) ∧ het γ = 0 ∧ pos γ
apply clarsimp
apply (rule γ-eq-trans)
by auto

hence ?S x by auto
}
ultimately have ?S x by auto

}
thus ?Q n by simp

qed

1.2.8 Cauchy’s Mean Theorem

We now present the final proof of the theorem. For any positive collection
we show that its geometric mean is less than or equal to its arithmetic mean.

theorem CauchysMeanTheorem:
fixes z ::real list
assumes pos z
shows gmean z ≤ mean z

proof −
from 〈pos z 〉 have zne: z 6=[] by (rule pos-imp-ne)
show gmean z ≤ mean z
proof cases
assume het z = 0
with 〈pos z 〉 zne het-base have gmean z = mean z by simp
thus ?thesis by simp

next
assume het z 6= 0

CHAPTER 1. CAUCHY’S MEAN THEOREM 25

hence het z > 0 by simp
moreover obtain k where k = het z by simp
moreover with calculation 〈pos z 〉 existence-of-het0 have
∃ y . gmean y > gmean z ∧ γ-eq (z ,y) ∧ het y = 0 ∧ pos y by auto

then obtain α where
gmean α > gmean z ∧ γ-eq (z ,α) ∧ het α = 0 ∧ pos α ..

with het-base γ-eq-def pos-imp-ne have
mean z = mean α and
gmean α > gmean z and
gmean α = mean α by auto

hence gmean z < mean z by simp
thus ?thesis by simp

qed
qed

end

Chapter 2

The Cauchy-Schwarz
Inequality

theory CauchySchwarz
imports Complex-Main
begin

2.1 Abstract

The following document presents a formalised proof of the Cauchy-Schwarz
Inequality for the specific case of Rn. The system used is Isabelle/Isar.
Theorem: Take V to be some vector space possessing a norm and inner
product, then for all a, b ∈ V the following inequality holds: |a·b| ≤ ‖a‖∗‖b‖.
Specifically, in the Real case, the norm is the Euclidean length and the inner
product is the standard dot product.

2.2 Formal Proof

2.2.1 Vector, Dot and Norm definitions.

This section presents definitions for a real vector type, a dot product function
and a norm function.

Vector

We now define a vector type to be a tuple of (function, length). Where the
function is of type nat ⇒ real. We also define some accessor functions and
appropriate notation.

types vector = (nat⇒real) ∗ nat

26

CHAPTER 2. THE CAUCHY-SCHWARZ INEQUALITY 27

definition
ith :: vector ⇒ nat ⇒ real (((-)-) [80 ,100] 100) where
ith v i = fst v i

definition
vlen :: vector ⇒ nat where
vlen v = snd v

Now to access the second element of some vector v the syntax is v2.

Dot and Norm

We now define the dot product and norm operations.

definition
dot :: vector ⇒ vector ⇒ real (infixr · 60) where
dot a b = (

∑
j∈{1 ..(vlen a)}. aj∗bj)

definition
norm :: vector ⇒ real (‖-‖ 100) where
norm v = sqrt (

∑
j∈{1 ..(vlen v)}. v jˆ2)

notation (HTML output)
norm (||-|| 100)

Another definition of the norm is ‖v‖ = sqrt (v · v). We show that our
definition leads to this one.

lemma norm-dot :
‖v‖ = sqrt (v ·v)
proof −
have sqrt (v ·v) = sqrt (

∑
j∈{1 ..(vlen v)}. v j∗v j) unfolding dot-def by simp

also with real-sq have . . . = sqrt (
∑

j∈{1 ..(vlen v)}. v jˆ2) by simp
also have . . . = ‖v‖ unfolding norm-def by simp
finally show ?thesis ..

qed

A further important property is that the norm is never negative.

lemma norm-pos:
‖v‖ ≥ 0

proof −
have ∀ j . v jˆ2 ≥ 0 unfolding ith-def by auto
hence ∀ j∈{1 ..(vlen v)}. v jˆ2 ≥ 0 by simp
with setsum-nonneg have (

∑
j∈{1 ..(vlen v)}. v jˆ2) ≥ 0 .

with real-sqrt-ge-zero have sqrt (
∑

j∈{1 ..(vlen v)}. v jˆ2) ≥ 0 .
thus ?thesis unfolding norm-def .

qed

We now prove an intermediary lemma regarding double summation.

lemma double-sum-aux :

CHAPTER 2. THE CAUCHY-SCHWARZ INEQUALITY 28

fixes f ::nat ⇒ real
shows
(
∑

k∈{1 ..n}. (
∑

j∈{1 ..n}. f k ∗ g j)) =
(
∑

k∈{1 ..n}. (
∑

j∈{1 ..n}. (f k ∗ g j + f j ∗ g k) / 2))
proof −
have

2 ∗ (
∑

k∈{1 ..n}. (
∑

j∈{1 ..n}. f k ∗ g j)) =
(
∑

k∈{1 ..n}. (
∑

j∈{1 ..n}. f k ∗ g j)) +
(
∑

k∈{1 ..n}. (
∑

j∈{1 ..n}. f k ∗ g j))
by simp

also have
. . . =
(
∑

k∈{1 ..n}. (
∑

j∈{1 ..n}. f k ∗ g j)) +
(
∑

k∈{1 ..n}. (
∑

j∈{1 ..n}. f j ∗ g k))
by (simp only : double-sum-equiv)

also have
. . . =
(
∑

k∈{1 ..n}. (
∑

j∈{1 ..n}. f k ∗ g j + f j ∗ g k))
by (auto simp add : setsum-addf)

finally have
2 ∗ (

∑
k∈{1 ..n}. (

∑
j∈{1 ..n}. f k ∗ g j)) =

(
∑

k∈{1 ..n}. (
∑

j∈{1 ..n}. f k ∗ g j + f j ∗ g k)) .
hence

(
∑

k∈{1 ..n}. (
∑

j∈{1 ..n}. f k ∗ g j)) =
(
∑

k∈{1 ..n}. (
∑

j∈{1 ..n}. (f k ∗ g j + f j ∗ g k)))∗(1/2)
by auto

also have
. . . =
(
∑

k∈{1 ..n}. (
∑

j∈{1 ..n}. (f k ∗ g j + f j ∗ g k)∗(1/2)))
by (simp add : setsum-right-distrib real-mult-commute)

finally show ?thesis by (auto simp add : inverse-eq-divide)
qed

The final theorem can now be proven. It is a simple forward proof that uses
properties of double summation and the preceding lemma.

theorem CauchySchwarzReal :
fixes x ::vector
assumes vlen x = vlen y
shows |x ·y | ≤ ‖x‖∗‖y‖

proof −
have 0 ≤ |x ·y | by simp
moreover have 0 ≤ ‖x‖∗‖y‖
by (auto simp add : norm-pos intro: mult-nonneg-nonneg)

moreover have |x ·y |ˆ2 ≤ (‖x‖∗‖y‖)ˆ2
proof −

We can rewrite the goal in the following form ...

have (‖x‖∗‖y‖)ˆ2 − |x ·y |ˆ2 ≥ 0
proof −

CHAPTER 2. THE CAUCHY-SCHWARZ INEQUALITY 29

obtain n where nx : n = vlen x by simp
with 〈vlen x = vlen y〉 have ny : n = vlen y by simp
{

Some preliminary simplification rules.

have ∀ j∈{1 ..n}. x jˆ2 ≥ 0 by simp
hence (

∑
j∈{1 ..n}. x jˆ2) ≥ 0 by (rule setsum-nonneg)

hence xp: (sqrt (
∑

j∈{1 ..n}. x jˆ2))ˆ2 = (
∑

j∈{1 ..n}. x jˆ2)
by (rule real-sqrt-pow2)

have ∀ j∈{1 ..n}. yjˆ2 ≥ 0 by simp
hence (

∑
j∈{1 ..n}. yjˆ2) ≥ 0 by (rule setsum-nonneg)

hence yp: (sqrt (
∑

j∈{1 ..n}. yjˆ2))ˆ2 = (
∑

j∈{1 ..n}. yjˆ2)
by (rule real-sqrt-pow2)

The main result of this section is that (‖x‖∗‖y‖)ˆ2 can be written as a double sum.

have
(‖x‖∗‖y‖)ˆ2 = ‖x‖ˆ2 ∗ ‖y‖ˆ2
by (simp add : real-sq-exp)

also from nx ny have
. . . = (sqrt (

∑
j∈{1 ..n}. x jˆ2))ˆ2 ∗ (sqrt (

∑
j∈{1 ..n}. yjˆ2))ˆ2

unfolding norm-def by auto
also from xp yp have

. . . = (
∑

j∈{1 ..n}. x jˆ2)∗(
∑

j∈{1 ..n}. yjˆ2)
by simp

also from setsum-product-expand have
. . . = (

∑
k∈{1 ..n}. (

∑
j∈{1 ..n}. (xkˆ2)∗(yjˆ2))) .

finally have
(‖x‖∗‖y‖)ˆ2 = (

∑
k∈{1 ..n}. (

∑
j∈{1 ..n}. (xkˆ2)∗(yjˆ2))) .

}
moreover
{

We also show that |x ·y |ˆ2 can be expressed as a double sum.

have
|x ·y |ˆ2 = (x ·y)ˆ2
by simp

also from nx have
. . . = (

∑
j∈{1 ..n}. x j∗yj)ˆ2

unfolding dot-def by simp
also from real-sq have

. . . = (
∑

j∈{1 ..n}. x j∗yj)∗(
∑

j∈{1 ..n}. x j∗yj)
by simp

also from setsum-product-expand have
. . . = (

∑
k∈{1 ..n}. (

∑
j∈{1 ..n}. (xk∗yk)∗(x j∗yj)))

by simp
finally have
|x ·y |ˆ2 = (

∑
k∈{1 ..n}. (

∑
j∈{1 ..n}. (xk∗yk)∗(x j∗yj))) .

}

CHAPTER 2. THE CAUCHY-SCHWARZ INEQUALITY 30

We now manipulate the double sum expressions to get the required inequality.

ultimately have
(‖x‖∗‖y‖)ˆ2 − |x ·y |ˆ2 =
(
∑

k∈{1 ..n}. (
∑

j∈{1 ..n}. (xkˆ2)∗(yjˆ2))) −
(
∑

k∈{1 ..n}. (
∑

j∈{1 ..n}. (xk∗yk)∗(x j∗yj)))
by simp

also have
. . . =
(
∑

k∈{1 ..n}. (
∑

j∈{1 ..n}. ((xkˆ2∗yjˆ2) + (x jˆ2∗ykˆ2))/2)) −
(
∑

k∈{1 ..n}. (
∑

j∈{1 ..n}. (xk∗yk)∗(x j∗yj)))
by (simp only : double-sum-aux)

also have
. . . =

(
∑

k∈{1 ..n}. (
∑

j∈{1 ..n}. ((xkˆ2∗yjˆ2) + (x jˆ2∗ykˆ2))/2 − (xk∗yk)∗(x j∗yj)))
by (auto simp add : setsum-subtractf)

also have
. . . =
(
∑

k∈{1 ..n}. (
∑

j∈{1 ..n}. (inverse 2)∗2∗
(((xkˆ2∗yjˆ2) + (x jˆ2∗ykˆ2))∗(1/2) − (xk∗yk)∗(x j∗yj))))
by auto

also have
. . . =
(
∑

k∈{1 ..n}. (
∑

j∈{1 ..n}. (inverse 2)∗(2∗
(((xkˆ2∗yjˆ2) + (x jˆ2∗ykˆ2))∗(1/2) − (xk∗yk)∗(x j∗yj)))))
by (simp only : real-mult-assoc)

also have
. . . =
(
∑

k∈{1 ..n}. (
∑

j∈{1 ..n}. (inverse 2)∗
((((xkˆ2∗yjˆ2) + (x jˆ2∗ykˆ2))∗2∗(inverse 2) − 2∗(xk∗yk)∗(x j∗yj)))))
by (auto simp add : real-add-mult-distrib real-mult-assoc mult-ac)

also have
. . . =
(
∑

k∈{1 ..n}. (
∑

j∈{1 ..n}. (inverse 2)∗
((((xkˆ2∗yjˆ2) + (x jˆ2∗ykˆ2)) − 2∗(xk∗yk)∗(x j∗yj)))))
by (simp only : real-mult-assoc, simp)

also have
. . . =
(inverse 2)∗(

∑
k∈{1 ..n}. (

∑
j∈{1 ..n}.

(((xkˆ2∗yjˆ2) + (x jˆ2∗ykˆ2)) − 2∗(xk∗yk)∗(x j∗yj))))
by (simp only : setsum-right-distrib)

also have
. . . =
(inverse 2)∗(

∑
k∈{1 ..n}. (

∑
j∈{1 ..n}. (xk∗yj − x j∗yk)ˆ2))

by (simp only : real-diff-exp real-sq-exp, auto simp add : mult-ac)
also have . . . ≥ 0
proof −

{
fix k ::nat
have ∀ j∈{1 ..n}. (xk∗yj − x j∗yk)ˆ2 ≥ 0 by simp

CHAPTER 2. THE CAUCHY-SCHWARZ INEQUALITY 31

hence (
∑

j∈{1 ..n}. (xk∗yj − x j∗yk)ˆ2) ≥ 0 by (rule setsum-nonneg)
}
hence ∀ k∈{1 ..n}. (

∑
j∈{1 ..n}. (xk∗yj − x j∗yk)ˆ2) ≥ 0 by simp

hence (
∑

k∈{1 ..n}. (
∑

j∈{1 ..n}. (xk∗yj − x j∗yk)ˆ2)) ≥ 0
by (rule setsum-nonneg)

thus ?thesis by simp
qed
finally show (‖x‖∗‖y‖)ˆ2 − |x ·y |ˆ2 ≥ 0 .

qed
thus ?thesis by simp

qed
ultimately show ?thesis by (rule real-sq-order)

qed

end

	Cauchy's Mean Theorem
	Abstract
	Formal proof
	Collection sum and product
	Auxillary lemma
	Mean and GMean
	list-neq, list-eq
	Element selection
	Abstract properties
	Existence of a new collection
	Cauchy's Mean Theorem

	The Cauchy-Schwarz Inequality
	Abstract
	Formal Proof
	Vector, Dot and Norm definitions.

